James McCool
commited on
Commit
·
8f424e5
1
Parent(s):
e31f6cd
Add general exposures tab and functionality in app.py
Browse files- Introduced a new tab for displaying general exposures in the app interface, enhancing user experience by providing additional insights.
- Implemented the create_general_exposures function to calculate and display overall and percentile-based statistics for specified columns.
- Updated session state management to handle the new general exposures data, ensuring seamless integration with existing features.
- app.py +20 -1
- global_func/create_general_exposures.py +37 -0
app.py
CHANGED
@@ -13,6 +13,7 @@ from global_func.find_name_mismatches import find_name_mismatches
|
|
13 |
from global_func.create_player_exposures import create_player_exposures
|
14 |
from global_func.create_stack_exposures import create_stack_exposures
|
15 |
from global_func.create_stack_size_exposures import create_stack_size_exposures
|
|
|
16 |
|
17 |
player_exposure_format = {'Exposure Overall': '{:.2%}', 'Exposure Top 1%': '{:.2%}', 'Exposure Top 5%': '{:.2%}', 'Exposure Top 10%': '{:.2%}', 'Exposure Top 20%': '{:.2%}'}
|
18 |
|
@@ -237,7 +238,7 @@ with tab2:
|
|
237 |
)
|
238 |
|
239 |
with st.container():
|
240 |
-
tab1, tab2, tab3 = st.tabs(['Player Used Info', 'Stack Used Info', 'Stack Size Info'])
|
241 |
with tab1:
|
242 |
|
243 |
if entry_parse_var == 'All':
|
@@ -286,3 +287,21 @@ with tab2:
|
|
286 |
style.background_gradient(cmap='RdYlGn').
|
287 |
format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
|
288 |
hide_index=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
from global_func.create_player_exposures import create_player_exposures
|
14 |
from global_func.create_stack_exposures import create_stack_exposures
|
15 |
from global_func.create_stack_size_exposures import create_stack_size_exposures
|
16 |
+
from global_func.create_general_exposures import create_general_exposures
|
17 |
|
18 |
player_exposure_format = {'Exposure Overall': '{:.2%}', 'Exposure Top 1%': '{:.2%}', 'Exposure Top 5%': '{:.2%}', 'Exposure Top 10%': '{:.2%}', 'Exposure Top 20%': '{:.2%}'}
|
19 |
|
|
|
238 |
)
|
239 |
|
240 |
with st.container():
|
241 |
+
tab1, tab2, tab3, tab4 = st.tabs(['Player Used Info', 'Stack Used Info', 'Stack Size Info', 'General Info'])
|
242 |
with tab1:
|
243 |
|
244 |
if entry_parse_var == 'All':
|
|
|
287 |
style.background_gradient(cmap='RdYlGn').
|
288 |
format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
|
289 |
hide_index=True)
|
290 |
+
|
291 |
+
with tab4:
|
292 |
+
|
293 |
+
if entry_parse_var == 'All':
|
294 |
+
st.session_state['general_frame'] = create_general_exposures(working_df)
|
295 |
+
st.dataframe(st.session_state['general_frame'].
|
296 |
+
sort_values(by='Exposure Overall', ascending=False).
|
297 |
+
style.background_gradient(cmap='RdYlGn').
|
298 |
+
format(formatter='{:.2%}', subset=st.session_state['general_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
|
299 |
+
hide_index=True)
|
300 |
+
else:
|
301 |
+
st.session_state['general_frame'] = create_general_exposures(working_df, entry_names)
|
302 |
+
st.dataframe(st.session_state['general_frame'].
|
303 |
+
sort_values(by='Exposure Overall', ascending=False).
|
304 |
+
style.background_gradient(cmap='RdYlGn').
|
305 |
+
format(formatter='{:.2%}', subset=st.session_state['general_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
|
306 |
+
hide_index=True)
|
307 |
+
|
global_func/create_general_exposures.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
def create_general_exposures(df: pd.DataFrame, entrants: list = None):
|
4 |
+
check_cols = ['salary', 'actual_fpts', 'actual_own', 'dupes']
|
5 |
+
general_exposures = pd.DataFrame()
|
6 |
+
for each_col in check_cols:
|
7 |
+
|
8 |
+
if entrants is not None:
|
9 |
+
overall_general = pd.Series(list(df[df['BaseName'].isin(entrants)][each_col])).sum()
|
10 |
+
else:
|
11 |
+
overall_general = pd.Series(list(df[each_col])).sum()
|
12 |
+
top_1per_general = pd.Series(list(df[df['percentile_finish'] <= 0.01][each_col])).sum()
|
13 |
+
top_5per_general = pd.Series(list(df[df['percentile_finish'] <= 0.05][each_col])).sum()
|
14 |
+
top_10per_general = pd.Series(list(df[df['percentile_finish'] <= 0.10][each_col])).sum()
|
15 |
+
top_20per_general = pd.Series(list(df[df['percentile_finish'] <= 0.20][each_col])).sum()
|
16 |
+
general_contest_len = len(df)
|
17 |
+
general_len_1per = len(df[df['percentile_finish'] <= 0.01])
|
18 |
+
general_len_5per = len(df[df['percentile_finish'] <= 0.05])
|
19 |
+
general_len_10per = len(df[df['percentile_finish'] <= 0.10])
|
20 |
+
general_len_20per = len(df[df['percentile_finish'] <= 0.20])
|
21 |
+
each_set_name = ['Overall', ' Top 1%', ' Top 5%', 'Top 10%', 'Top 20%']
|
22 |
+
each_general_set = [overall_general, top_1per_general, top_5per_general, top_10per_general, top_20per_general]
|
23 |
+
each_general_len_set = [general_contest_len, general_len_1per, general_len_5per, general_len_10per, general_len_20per]
|
24 |
+
general_count_var = 0
|
25 |
+
for each_general in each_general_set:
|
26 |
+
general_frame = pd.DataFrame()
|
27 |
+
general_frame['Stat'] = each_col
|
28 |
+
general_frame['Average'] = each_general / each_general_len_set[general_count_var]
|
29 |
+
general_frame = general_frame[['Stat', 'Average']]
|
30 |
+
general_frame = general_frame.rename(columns={'Average': f'Average {each_set_name[general_count_var]}'})
|
31 |
+
if len(general_exposures) == 0:
|
32 |
+
general_exposures = general_frame
|
33 |
+
else:
|
34 |
+
general_exposures = pd.merge(general_exposures, general_frame, on='Stat', how='outer')
|
35 |
+
general_count_var += 1
|
36 |
+
|
37 |
+
return general_exposures
|