James McCool
commited on
Commit
·
937f1e0
1
Parent(s):
55a782f
Enhance general exposures calculation in create_general_exposures.py
Browse files- Added 'uniques' and 'under_5' to the list of columns checked for general exposures, improving the data analysis by incorporating additional metrics.
- Updated the naming in the output DataFrame to reflect these new metrics, enhancing clarity in the results.
global_func/create_general_exposures.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import pandas as pd
|
2 |
|
3 |
def create_general_exposures(df: pd.DataFrame, entrants: list = None):
|
4 |
-
check_cols = ['salary', 'actual_fpts', 'actual_own', 'dupes']
|
5 |
general_exposures = pd.DataFrame()
|
6 |
for each_col in check_cols:
|
7 |
general_frame = pd.DataFrame()
|
@@ -19,7 +19,7 @@ def create_general_exposures(df: pd.DataFrame, entrants: list = None):
|
|
19 |
general_len_5per = len(df[df['percentile_finish'] <= 0.05])
|
20 |
general_len_10per = len(df[df['percentile_finish'] <= 0.10])
|
21 |
general_len_20per = len(df[df['percentile_finish'] <= 0.20])
|
22 |
-
each_set_name = ['Overall', ' Top 1%', ' Top 5%', 'Top 10%', 'Top 20%']
|
23 |
each_general_set = [overall_general, top_1per_general, top_5per_general, top_10per_general, top_20per_general]
|
24 |
each_general_len_set = [general_contest_len, general_len_1per, general_len_5per, general_len_10per, general_len_20per]
|
25 |
general_count_var = 0
|
@@ -39,5 +39,5 @@ def create_general_exposures(df: pd.DataFrame, entrants: list = None):
|
|
39 |
general_exposures = general_row
|
40 |
else:
|
41 |
general_exposures = pd.concat([general_exposures, general_frame], ignore_index = True, axis = 0)
|
42 |
-
general_exposures['Stat'] = general_exposures['Stat'].replace(['salary', 'actual_fpts', 'actual_own', 'dupes'], ['Salary Used', 'Finishing Points', 'Total Ownership', 'Duplications'])
|
43 |
return general_exposures
|
|
|
1 |
import pandas as pd
|
2 |
|
3 |
def create_general_exposures(df: pd.DataFrame, entrants: list = None):
|
4 |
+
check_cols = ['salary', 'actual_fpts', 'actual_own', 'dupes', 'uniques', 'under_5']
|
5 |
general_exposures = pd.DataFrame()
|
6 |
for each_col in check_cols:
|
7 |
general_frame = pd.DataFrame()
|
|
|
19 |
general_len_5per = len(df[df['percentile_finish'] <= 0.05])
|
20 |
general_len_10per = len(df[df['percentile_finish'] <= 0.10])
|
21 |
general_len_20per = len(df[df['percentile_finish'] <= 0.20])
|
22 |
+
each_set_name = ['Overall', ' Top 1%', ' Top 5%', 'Top 10%', 'Top 20%', 'Uniques', 'Under 5']
|
23 |
each_general_set = [overall_general, top_1per_general, top_5per_general, top_10per_general, top_20per_general]
|
24 |
each_general_len_set = [general_contest_len, general_len_1per, general_len_5per, general_len_10per, general_len_20per]
|
25 |
general_count_var = 0
|
|
|
39 |
general_exposures = general_row
|
40 |
else:
|
41 |
general_exposures = pd.concat([general_exposures, general_frame], ignore_index = True, axis = 0)
|
42 |
+
general_exposures['Stat'] = general_exposures['Stat'].replace(['salary', 'actual_fpts', 'actual_own', 'dupes', 'uniques', 'under_5'], ['Salary Used', 'Finishing Points', 'Total Ownership', 'Duplications', 'Uniques', 'Under 5'])
|
43 |
return general_exposures
|