James McCool
commited on
Commit
·
b439c13
1
Parent(s):
51da0a5
Add player exposure metrics by percentile in app.py
Browse files- Implemented calculations for player exposure across various percentiles (Overall, Top 1%, Top 5%, Top 10%, Top 20%) to enhance performance analysis.
- Updated session state management to store and display player exposure data, improving the clarity and usability of player performance metrics in the application.
app.py
CHANGED
@@ -263,6 +263,36 @@ with tab2:
|
|
263 |
style.background_gradient(cmap='RdYlGn').
|
264 |
format(formatter='{:.2%}', subset=st.session_state['player_frame'].select_dtypes(include=['number']).columns),
|
265 |
hide_index=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
with tab2:
|
267 |
st.write('holding')
|
268 |
with tab3:
|
|
|
263 |
style.background_gradient(cmap='RdYlGn').
|
264 |
format(formatter='{:.2%}', subset=st.session_state['player_frame'].select_dtypes(include=['number']).columns),
|
265 |
hide_index=True)
|
266 |
+
else:
|
267 |
+
overall_players = pd.Series(list(working_df[working_df['BaseName'].isin(entry_names)][player_columns].values.flatten())).value_counts()
|
268 |
+
top_1per_players = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.01][player_columns].values.flatten())).value_counts()
|
269 |
+
top_5per_players = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.05][player_columns].values.flatten())).value_counts()
|
270 |
+
top_10per_players = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.10][player_columns].values.flatten())).value_counts()
|
271 |
+
top_20per_players = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.20][player_columns].values.flatten())).value_counts()
|
272 |
+
contest_len = len(working_df)
|
273 |
+
len_1per = len(working_df[working_df['percentile_finish'] <= 0.01])
|
274 |
+
len_5per = len(working_df[working_df['percentile_finish'] <= 0.05])
|
275 |
+
len_10per = len(working_df[working_df['percentile_finish'] <= 0.10])
|
276 |
+
len_20per = len(working_df[working_df['percentile_finish'] <= 0.20])
|
277 |
+
each_set_name = ['Overall', ' Top 1%', ' Top 5%', 'Top 10%', 'Top 20%']
|
278 |
+
each_frame_set = [overall_players, top_1per_players, top_5per_players, top_10per_players, top_20per_players]
|
279 |
+
each_len_set = [contest_len, len_1per, len_5per, len_10per, len_20per]
|
280 |
+
player_count_var = 0
|
281 |
+
for each_set in each_frame_set:
|
282 |
+
set_frame = each_set.to_frame().reset_index().rename(columns={'index': 'Player', 'count': 'Count'})
|
283 |
+
set_frame['Percent'] = set_frame['Count'] / each_len_set[player_count_var]
|
284 |
+
set_frame = set_frame[['Player', 'Percent']]
|
285 |
+
set_frame = set_frame.rename(columns={'Percent': f'Exposure {each_set_name[player_count_var]}'})
|
286 |
+
if 'player_frame' not in st.session_state:
|
287 |
+
st.session_state['player_frame'] = set_frame
|
288 |
+
else:
|
289 |
+
st.session_state['player_frame'] = pd.merge(st.session_state['player_frame'], set_frame, on='Player', how='outer')
|
290 |
+
player_count_var += 1
|
291 |
+
st.dataframe(st.session_state['player_frame'].
|
292 |
+
sort_values(by='Exposure Overall', ascending=False).
|
293 |
+
style.background_gradient(cmap='RdYlGn').
|
294 |
+
format(formatter='{:.2%}', subset=st.session_state['player_frame'].select_dtypes(include=['number']).columns),
|
295 |
+
hide_index=True)
|
296 |
with tab2:
|
297 |
st.write('holding')
|
298 |
with tab3:
|