James McCool commited on
Commit
bbf6bb9
·
1 Parent(s): f099cf5

Enhance debugging feedback in load_contest_file function

Browse files

- Added print statements throughout the load_contest_file function to provide step-by-step feedback during the data loading and processing stages.
- Improved visibility into the function's execution flow, aiding in debugging and ensuring that each critical step is completed successfully.

Files changed (1) hide show
  1. global_func/load_contest_file.py +12 -0
global_func/load_contest_file.py CHANGED
@@ -18,6 +18,8 @@ def load_contest_file(upload, helper = None, sport = None):
18
  raw_df = upload
19
  if helper is not None:
20
  helper_df = helper
 
 
21
 
22
  # Select and rename essential columns for the actual upload
23
  if helper is None:
@@ -25,6 +27,8 @@ def load_contest_file(upload, helper = None, sport = None):
25
  else:
26
  df = raw_df[['EntryId', 'EntryName', 'TimeRemaining', 'Points', 'Lineup', 'Player', 'Roster Position', '%Drafted', 'FPTS']]
27
  df = df.rename(columns={'Roster Position': 'Pos', '%Drafted': 'Own'})
 
 
28
 
29
  # Split EntryName into base name and entry count
30
  df['BaseName'] = df['EntryName'].str.replace(r'\s*\(\d+/\d+\)$', '', regex=True)
@@ -36,6 +40,8 @@ def load_contest_file(upload, helper = None, sport = None):
36
  df['Own'] = df['Own'].str.replace('%', '').astype(float)
37
  except:
38
  df['Own'] = df['Own'].astype(float)
 
 
39
 
40
  # Select and rename essential columns for the actual upload
41
  if helper is not None:
@@ -53,6 +59,8 @@ def load_contest_file(upload, helper = None, sport = None):
53
  except:
54
  df_helper['Own'] = df_helper['Own'].astype(float)
55
 
 
 
56
  # Create separate dataframes for different player attributes
57
  if helper is not None:
58
  ownership_df = df[['Player', 'Own']]
@@ -66,6 +74,8 @@ def load_contest_file(upload, helper = None, sport = None):
66
  salary_df = df[['Player', 'Salary']]
67
  team_df = df[['Player', 'Team']]
68
  pos_df = df[['Player', 'Pos']]
 
 
69
 
70
  # Create the cleaned dataframe with just the essential columns
71
  cleaned_df = df[['BaseName', 'Lineup']]
@@ -76,6 +86,8 @@ def load_contest_file(upload, helper = None, sport = None):
76
  entry_counts = cleaned_df['BaseName'].value_counts()
77
  cleaned_df['EntryCount'] = cleaned_df['BaseName'].map(entry_counts)
78
  cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'P1', 'P2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']]
 
 
79
 
80
  # Get unique entry names
81
  entry_list = list(set(df['BaseName']))
 
18
  raw_df = upload
19
  if helper is not None:
20
  helper_df = helper
21
+
22
+ print('Made it through initial upload')
23
 
24
  # Select and rename essential columns for the actual upload
25
  if helper is None:
 
27
  else:
28
  df = raw_df[['EntryId', 'EntryName', 'TimeRemaining', 'Points', 'Lineup', 'Player', 'Roster Position', '%Drafted', 'FPTS']]
29
  df = df.rename(columns={'Roster Position': 'Pos', '%Drafted': 'Own'})
30
+
31
+ print('Made it through rename')
32
 
33
  # Split EntryName into base name and entry count
34
  df['BaseName'] = df['EntryName'].str.replace(r'\s*\(\d+/\d+\)$', '', regex=True)
 
40
  df['Own'] = df['Own'].str.replace('%', '').astype(float)
41
  except:
42
  df['Own'] = df['Own'].astype(float)
43
+
44
+ print('Made it through ownership conversion')
45
 
46
  # Select and rename essential columns for the actual upload
47
  if helper is not None:
 
59
  except:
60
  df_helper['Own'] = df_helper['Own'].astype(float)
61
 
62
+ print('Made it through helper')
63
+
64
  # Create separate dataframes for different player attributes
65
  if helper is not None:
66
  ownership_df = df[['Player', 'Own']]
 
74
  salary_df = df[['Player', 'Salary']]
75
  team_df = df[['Player', 'Team']]
76
  pos_df = df[['Player', 'Pos']]
77
+
78
+ print('Made it through dictionaries')
79
 
80
  # Create the cleaned dataframe with just the essential columns
81
  cleaned_df = df[['BaseName', 'Lineup']]
 
86
  entry_counts = cleaned_df['BaseName'].value_counts()
87
  cleaned_df['EntryCount'] = cleaned_df['BaseName'].map(entry_counts)
88
  cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'P1', 'P2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']]
89
+
90
+ print('Made it through check_lineups')
91
 
92
  # Get unique entry names
93
  entry_list = list(set(df['BaseName']))