James McCool commited on
Commit
c4642dd
·
1 Parent(s): 7f07fe7

Refine error message and enhance duplication frame metrics in app.py

Browse files

- Updated the error message for contest retrieval to clarify the conditions under which no contests are found.
- Improved the duplication frame by calculating percentages for 'uniques', 'under_5', and 'under_10' relative to 'EntryCount', enhancing data analysis and clarity.

Files changed (1) hide show
  1. app.py +7 -4
app.py CHANGED
@@ -88,7 +88,7 @@ with tab1:
88
  try:
89
  contest_names, curr_info = grab_contest_names(db, sport_select, type_var)
90
  except:
91
- st.error("No contests found for this sport, type, and date range")
92
  st.stop()
93
 
94
  with date_options:
@@ -428,7 +428,10 @@ with tab2:
428
  st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True)
429
 
430
  with tab5:
431
- st.session_state['duplication_frame'] = working_df[['BaseName', 'EntryCount', 'dupes', 'uniques', 'under_5', 'under_10']]
432
- st.session_state['duplication_frame']['average_dupes'] = st.session_state['duplication_frame'].groupby('BaseName')['dupes'].mean()
433
- st.session_state['duplication_frame'] = st.session_state['duplication_frame'][['BaseName', 'EntryCount', 'average_dupes', 'uniques', 'under_5', 'under_10']].drop_duplicates(subset='BaseName', keep='first')
 
 
 
434
  st.dataframe(st.session_state['duplication_frame'].style.background_gradient(cmap='RdYlGn_r', axis=1).format(precision=2), hide_index=True)
 
88
  try:
89
  contest_names, curr_info = grab_contest_names(db, sport_select, type_var)
90
  except:
91
+ st.error("No contests found for this sport and/or game type")
92
  st.stop()
93
 
94
  with date_options:
 
428
  st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True)
429
 
430
  with tab5:
431
+ dupe_frame = working_df[['BaseName', 'EntryCount', 'dupes', 'uniques', 'under_5', 'under_10']]
432
+ dupe_frame['average_dupes'] = dupe_frame['dupes'].mean()
433
+ dupe_frame['uniques%'] = dupe_frame['uniques'] / dupe_frame['EntryCount']
434
+ dupe_frame['under_5%'] = dupe_frame['under_5'] / dupe_frame['EntryCount']
435
+ dupe_frame['under_10%'] = dupe_frame['under_10'] / dupe_frame['EntryCount']
436
+ st.session_state['duplication_frame'] = dupe_frame[['BaseName', 'EntryCount', 'average_dupes', 'uniques', 'uniques%', 'under_5', 'under_5%', 'under_10', 'under_10%']].drop_duplicates(subset='BaseName', keep='first')
437
  st.dataframe(st.session_state['duplication_frame'].style.background_gradient(cmap='RdYlGn_r', axis=1).format(precision=2), hide_index=True)