James McCool
commited on
Commit
·
c74ec2d
1
Parent(s):
90735b6
Refactor variable usage in app.py for clarity and consistency
Browse files- Updated variable assignments in app.py to use local variables for ownership_dict and actual_dict instead of session state, enhancing code readability and maintainability.
- Ensured that the changes maintain the integrity of data processing during name matching operations.
app.py
CHANGED
@@ -75,7 +75,7 @@ with tab1:
|
|
75 |
if 'Contest' not in st.session_state and 'projections_df' not in st.session_state:
|
76 |
if contest_base is not None and projections is not None:
|
77 |
st.subheader("Name Matching functions")
|
78 |
-
st.session_state['Contest'], st.session_state['projections_df'],
|
79 |
st.session_state['projections_df']['salary'] = (st.session_state['projections_df']['salary'].astype(str).str.replace(',', '').astype(float).astype(int))
|
80 |
|
81 |
with tab2:
|
@@ -138,9 +138,9 @@ with tab2:
|
|
138 |
)
|
139 |
working_df['salary'] = working_df.apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1)
|
140 |
working_df['median'] = working_df.apply(lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row), axis=1)
|
141 |
-
working_df['actual_fpts'] = working_df.apply(lambda row: sum(
|
142 |
working_df['Own'] = working_df.apply(lambda row: sum(map_dict['own_map'].get(player, 0) for player in row), axis=1)
|
143 |
-
working_df['actual_own'] = working_df.apply(lambda row: sum(
|
144 |
working_df['sorted'] = working_df[player_columns].apply(
|
145 |
lambda row: ','.join(sorted(row.values)),
|
146 |
axis=1
|
|
|
75 |
if 'Contest' not in st.session_state and 'projections_df' not in st.session_state:
|
76 |
if contest_base is not None and projections is not None:
|
77 |
st.subheader("Name Matching functions")
|
78 |
+
st.session_state['Contest'], st.session_state['projections_df'], ownership_dict, actual_dict = find_name_mismatches(contest_base, projections, ownership_df, fpts_df)
|
79 |
st.session_state['projections_df']['salary'] = (st.session_state['projections_df']['salary'].astype(str).str.replace(',', '').astype(float).astype(int))
|
80 |
|
81 |
with tab2:
|
|
|
138 |
)
|
139 |
working_df['salary'] = working_df.apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1)
|
140 |
working_df['median'] = working_df.apply(lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row), axis=1)
|
141 |
+
working_df['actual_fpts'] = working_df.apply(lambda row: sum(actual_dict.get(player, 0) for player in row), axis=1)
|
142 |
working_df['Own'] = working_df.apply(lambda row: sum(map_dict['own_map'].get(player, 0) for player in row), axis=1)
|
143 |
+
working_df['actual_own'] = working_df.apply(lambda row: sum(ownership_dict.get(player, 0) for player in row), axis=1)
|
144 |
working_df['sorted'] = working_df[player_columns].apply(
|
145 |
lambda row: ','.join(sorted(row.values)),
|
146 |
axis=1
|