James McCool
commited on
Commit
·
d18e5a9
1
Parent(s):
6d2f6bb
Add stack size exposure calculations in app.py and create_stack_size_exposures.py
Browse files- Introduced the create_stack_size_exposures function to calculate stack size exposures based on player performance metrics.
- Updated app.py to integrate the new function, allowing for the display of stack size exposure data in the user interface.
- Enhanced tab structure in app.py to reflect the addition of stack size information, improving overall data presentation and user experience.
- app.py +17 -2
- global_func/create_stack_size_exposures.py +33 -0
app.py
CHANGED
@@ -12,6 +12,7 @@ from global_func.load_file import load_file
|
|
12 |
from global_func.find_name_mismatches import find_name_mismatches
|
13 |
from global_func.create_player_exposures import create_player_exposures
|
14 |
from global_func.create_stack_exposures import create_stack_exposures
|
|
|
15 |
|
16 |
player_exposure_format = {'Exposure Overall': '{:.2%}', 'Exposure Top 1%': '{:.2%}', 'Exposure Top 5%': '{:.2%}', 'Exposure Top 10%': '{:.2%}', 'Exposure Top 20%': '{:.2%}'}
|
17 |
if 'calc_toggle' not in st.session_state:
|
@@ -238,7 +239,7 @@ with tab2:
|
|
238 |
)
|
239 |
|
240 |
with st.container():
|
241 |
-
tab1, tab2, tab3 = st.tabs(['Player Used Info', 'Stack Used Info', '
|
242 |
with tab1:
|
243 |
|
244 |
if entry_parse_var == 'All':
|
@@ -272,4 +273,18 @@ with tab2:
|
|
272 |
format(formatter='{:.2%}', subset=st.session_state['stack_frame'].select_dtypes(include=['number']).columns),
|
273 |
hide_index=True)
|
274 |
with tab3:
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
from global_func.find_name_mismatches import find_name_mismatches
|
13 |
from global_func.create_player_exposures import create_player_exposures
|
14 |
from global_func.create_stack_exposures import create_stack_exposures
|
15 |
+
from global_func.create_stack_size_exposures import create_stack_size_exposures
|
16 |
|
17 |
player_exposure_format = {'Exposure Overall': '{:.2%}', 'Exposure Top 1%': '{:.2%}', 'Exposure Top 5%': '{:.2%}', 'Exposure Top 10%': '{:.2%}', 'Exposure Top 20%': '{:.2%}'}
|
18 |
if 'calc_toggle' not in st.session_state:
|
|
|
239 |
)
|
240 |
|
241 |
with st.container():
|
242 |
+
tab1, tab2, tab3 = st.tabs(['Player Used Info', 'Stack Used Info', 'Stack Size Info'])
|
243 |
with tab1:
|
244 |
|
245 |
if entry_parse_var == 'All':
|
|
|
273 |
format(formatter='{:.2%}', subset=st.session_state['stack_frame'].select_dtypes(include=['number']).columns),
|
274 |
hide_index=True)
|
275 |
with tab3:
|
276 |
+
|
277 |
+
if entry_parse_var == 'All':
|
278 |
+
st.session_state['stack_size_frame'] = create_stack_size_exposures(working_df)
|
279 |
+
st.dataframe(st.session_state['stack_size_frame'].
|
280 |
+
sort_values(by='Exposure Overall', ascending=False).
|
281 |
+
style.background_gradient(cmap='RdYlGn').
|
282 |
+
format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].select_dtypes(include=['number']).columns),
|
283 |
+
hide_index=True)
|
284 |
+
else:
|
285 |
+
st.session_state['stack_size_frame'] = create_stack_size_exposures(working_df, entry_names)
|
286 |
+
st.dataframe(st.session_state['stack_size_frame'].
|
287 |
+
sort_values(by='Exposure Overall', ascending=False).
|
288 |
+
style.background_gradient(cmap='RdYlGn').
|
289 |
+
format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].select_dtypes(include=['number']).columns),
|
290 |
+
hide_index=True)
|
global_func/create_stack_size_exposures.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
def create_stack_size_exposures(df: pd.DataFrame, entrants: list = None):
|
4 |
+
stack_size_exposures = pd.DataFrame()
|
5 |
+
if entrants is not None:
|
6 |
+
overall_stack_sizes = pd.Series(list(df[df['BaseName'].isin(entrants)]['stack_size'])).value_counts()
|
7 |
+
else:
|
8 |
+
overall_stack_sizes = pd.Series(list(df['stack_size'])).value_counts()
|
9 |
+
top_1per_stack_sizes = pd.Series(list(df[df['percentile_finish'] <= 0.01]['stack_size'])).value_counts()
|
10 |
+
top_5per_stack_sizes = pd.Series(list(df[df['percentile_finish'] <= 0.05]['stack_size'])).value_counts()
|
11 |
+
top_10per_stack_sizes = pd.Series(list(df[df['percentile_finish'] <= 0.10]['stack_size'])).value_counts()
|
12 |
+
top_20per_stack_sizes = pd.Series(list(df[df['percentile_finish'] <= 0.20]['stack_size'])).value_counts()
|
13 |
+
stack_sizes_contest_len = len(df)
|
14 |
+
stack_sizes_len_1per = len(df[df['percentile_finish'] <= 0.01])
|
15 |
+
stack_sizes_len_5per = len(df[df['percentile_finish'] <= 0.05])
|
16 |
+
stack_sizes_len_10per = len(df[df['percentile_finish'] <= 0.10])
|
17 |
+
stack_sizes_len_20per = len(df[df['percentile_finish'] <= 0.20])
|
18 |
+
each_set_name = ['Overall', ' Top 1%', ' Top 5%', 'Top 10%', 'Top 20%']
|
19 |
+
each_stack_sizes_set = [overall_stack_sizes, top_1per_stack_sizes, top_5per_stack_sizes, top_10per_stack_sizes, top_20per_stack_sizes]
|
20 |
+
each_stack_sizes_len_set = [stack_sizes_contest_len, stack_sizes_len_1per, stack_sizes_len_5per, stack_sizes_len_10per, stack_sizes_len_20per]
|
21 |
+
stack_size_count_var = 0
|
22 |
+
for each_stack_size in each_stack_sizes_set:
|
23 |
+
stack_size_frame = each_stack_size.to_frame().reset_index().rename(columns={'index': 'Size', 'count': 'Count'})
|
24 |
+
stack_size_frame['Percent'] = stack_size_frame['Count'] / each_stack_sizes_len_set[stack_size_count_var]
|
25 |
+
stack_size_frame = stack_size_frame[['Size', 'Percent']]
|
26 |
+
stack_size_frame = stack_size_frame.rename(columns={'Percent': f'Exposure {each_set_name[stack_size_count_var]}'})
|
27 |
+
if len(stack_size_exposures) == 0:
|
28 |
+
stack_size_exposures = stack_size_frame
|
29 |
+
else:
|
30 |
+
stack_size_exposures = pd.merge(stack_size_exposures, stack_size_frame, on='Size', how='outer')
|
31 |
+
stack_size_count_var += 1
|
32 |
+
|
33 |
+
return stack_size_exposures
|