James McCool commited on
Commit
d91cbaa
·
1 Parent(s): 3d4e38c

Refactor player data processing in app.py

Browse files

- Updated the logic for calculating 'stack', 'stack_size', 'salary', 'actual_fpts', and 'actual_own' to utilize the player columns defined in session state, ensuring accurate data aggregation.
- Enhanced the application’s ability to handle player data by applying functions specifically to the relevant columns, improving overall data integrity and performance.

Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -168,21 +168,21 @@ with tab2:
168
  if type_var == 'Classic':
169
  working_df['stack'] = working_df.apply(
170
  lambda row: Counter(
171
- st.session_state['map_dict']['team_map'].get(player, '') for player in row[4:]
172
  if st.session_state['map_dict']['team_map'].get(player, '') != ''
173
- ).most_common(1)[0][0] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[4:]) else '',
174
  axis=1
175
  )
176
  working_df['stack_size'] = working_df.apply(
177
  lambda row: Counter(
178
- st.session_state['map_dict']['team_map'].get(player, '') for player in row[4:]
179
  if st.session_state['map_dict']['team_map'].get(player, '') != ''
180
- ).most_common(1)[0][1] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[4:]) else '',
181
  axis=1
182
  )
183
- working_df['salary'] = working_df.apply(lambda row: sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row), axis=1)
184
- working_df['actual_fpts'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row), axis=1)
185
- working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1)
186
  working_df['sorted'] = working_df[st.session_state['player_columns']].apply(
187
  lambda row: ','.join(sorted(row.values)),
188
  axis=1
 
168
  if type_var == 'Classic':
169
  working_df['stack'] = working_df.apply(
170
  lambda row: Counter(
171
+ st.session_state['map_dict']['team_map'].get(player, '') for player in row[st.session_state['player_columns']]
172
  if st.session_state['map_dict']['team_map'].get(player, '') != ''
173
+ ).most_common(1)[0][0] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[st.session_state['player_columns']]) else '',
174
  axis=1
175
  )
176
  working_df['stack_size'] = working_df.apply(
177
  lambda row: Counter(
178
+ st.session_state['map_dict']['team_map'].get(player, '') for player in row[st.session_state['player_columns']]
179
  if st.session_state['map_dict']['team_map'].get(player, '') != ''
180
+ ).most_common(1)[0][1] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[st.session_state['player_columns']]) else '',
181
  axis=1
182
  )
183
+ working_df['salary'] = working_df.apply(lambda row: sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row[st.session_state['player_columns']]), axis=1)
184
+ working_df['actual_fpts'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row[st.session_state['player_columns']]), axis=1)
185
+ working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row[st.session_state['player_columns']]), axis=1)
186
  working_df['sorted'] = working_df[st.session_state['player_columns']].apply(
187
  lambda row: ','.join(sorted(row.values)),
188
  axis=1