James McCool
commited on
Commit
·
d91cbaa
1
Parent(s):
3d4e38c
Refactor player data processing in app.py
Browse files- Updated the logic for calculating 'stack', 'stack_size', 'salary', 'actual_fpts', and 'actual_own' to utilize the player columns defined in session state, ensuring accurate data aggregation.
- Enhanced the application’s ability to handle player data by applying functions specifically to the relevant columns, improving overall data integrity and performance.
app.py
CHANGED
@@ -168,21 +168,21 @@ with tab2:
|
|
168 |
if type_var == 'Classic':
|
169 |
working_df['stack'] = working_df.apply(
|
170 |
lambda row: Counter(
|
171 |
-
st.session_state['map_dict']['team_map'].get(player, '') for player in row[
|
172 |
if st.session_state['map_dict']['team_map'].get(player, '') != ''
|
173 |
-
).most_common(1)[0][0] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[
|
174 |
axis=1
|
175 |
)
|
176 |
working_df['stack_size'] = working_df.apply(
|
177 |
lambda row: Counter(
|
178 |
-
st.session_state['map_dict']['team_map'].get(player, '') for player in row[
|
179 |
if st.session_state['map_dict']['team_map'].get(player, '') != ''
|
180 |
-
).most_common(1)[0][1] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[
|
181 |
axis=1
|
182 |
)
|
183 |
-
working_df['salary'] = working_df.apply(lambda row: sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row), axis=1)
|
184 |
-
working_df['actual_fpts'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row), axis=1)
|
185 |
-
working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1)
|
186 |
working_df['sorted'] = working_df[st.session_state['player_columns']].apply(
|
187 |
lambda row: ','.join(sorted(row.values)),
|
188 |
axis=1
|
|
|
168 |
if type_var == 'Classic':
|
169 |
working_df['stack'] = working_df.apply(
|
170 |
lambda row: Counter(
|
171 |
+
st.session_state['map_dict']['team_map'].get(player, '') for player in row[st.session_state['player_columns']]
|
172 |
if st.session_state['map_dict']['team_map'].get(player, '') != ''
|
173 |
+
).most_common(1)[0][0] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[st.session_state['player_columns']]) else '',
|
174 |
axis=1
|
175 |
)
|
176 |
working_df['stack_size'] = working_df.apply(
|
177 |
lambda row: Counter(
|
178 |
+
st.session_state['map_dict']['team_map'].get(player, '') for player in row[st.session_state['player_columns']]
|
179 |
if st.session_state['map_dict']['team_map'].get(player, '') != ''
|
180 |
+
).most_common(1)[0][1] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[st.session_state['player_columns']]) else '',
|
181 |
axis=1
|
182 |
)
|
183 |
+
working_df['salary'] = working_df.apply(lambda row: sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row[st.session_state['player_columns']]), axis=1)
|
184 |
+
working_df['actual_fpts'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row[st.session_state['player_columns']]), axis=1)
|
185 |
+
working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row[st.session_state['player_columns']]), axis=1)
|
186 |
working_df['sorted'] = working_df[st.session_state['player_columns']].apply(
|
187 |
lambda row: ','.join(sorted(row.values)),
|
188 |
axis=1
|