James McCool commited on
Commit
eb256a2
·
1 Parent(s): 2ad75df

Enhance data visibility in load_contest_file.py by replacing print statements with st.table

Browse files

- Updated the load_contest_file function to display the first 10 rows of cleaned_df using st.table instead of print statements, improving the user interface for data review.
- Maintained existing functionality while enhancing the clarity and presentation of contest data during processing.

Files changed (1) hide show
  1. global_func/load_contest_file.py +3 -2
global_func/load_contest_file.py CHANGED
@@ -113,6 +113,7 @@ def load_contest_file(upload, helper_var, helper = None, sport = None):
113
  cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' P ', ' C ', '1B ', ' 2B ', ' 3B ', ' SS ', ' OF ', ' G ', 'G '], value=',', regex=True)
114
  print(sport)
115
  print(cleaned_df.head(10))
 
116
  check_lineups = cleaned_df.copy()
117
  if sport == 'MLB':
118
  cleaned_df[['Remove', '1B', '2B', '3B', 'C', 'OF1', 'OF2', 'OF3', 'P1', 'P2', 'SS']] = cleaned_df['Lineup'].str.split(',', expand=True)
@@ -120,7 +121,7 @@ def load_contest_file(upload, helper_var, helper = None, sport = None):
120
  cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True)
121
  elif sport == 'GOLF':
122
  cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True)
123
- print(cleaned_df.head(10))
124
  cleaned_df = cleaned_df.drop(columns=['Lineup', 'Remove'])
125
  entry_counts = cleaned_df['BaseName'].value_counts()
126
  cleaned_df['EntryCount'] = cleaned_df['BaseName'].map(entry_counts)
@@ -130,7 +131,7 @@ def load_contest_file(upload, helper_var, helper = None, sport = None):
130
  cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']]
131
  elif sport == 'GOLF':
132
  cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']]
133
- print(cleaned_df.head(10))
134
 
135
  print('Made it through check_lineups')
136
 
 
113
  cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' P ', ' C ', '1B ', ' 2B ', ' 3B ', ' SS ', ' OF ', ' G ', 'G '], value=',', regex=True)
114
  print(sport)
115
  print(cleaned_df.head(10))
116
+ st.table(cleaned_df.head(10))
117
  check_lineups = cleaned_df.copy()
118
  if sport == 'MLB':
119
  cleaned_df[['Remove', '1B', '2B', '3B', 'C', 'OF1', 'OF2', 'OF3', 'P1', 'P2', 'SS']] = cleaned_df['Lineup'].str.split(',', expand=True)
 
121
  cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True)
122
  elif sport == 'GOLF':
123
  cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True)
124
+ st.table(cleaned_df.head(10))
125
  cleaned_df = cleaned_df.drop(columns=['Lineup', 'Remove'])
126
  entry_counts = cleaned_df['BaseName'].value_counts()
127
  cleaned_df['EntryCount'] = cleaned_df['BaseName'].map(entry_counts)
 
131
  cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']]
132
  elif sport == 'GOLF':
133
  cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']]
134
+ st.table(cleaned_df.head(10))
135
 
136
  print('Made it through check_lineups')
137