import streamlit as st import numpy as np import pandas as pd import time from fuzzywuzzy import process ## import global functions from global_func.clean_player_name import clean_player_name def load_file(upload): pos_values = ['P', 'C', '1B', '2B', '3B', 'SS', 'OF'] if upload is not None: try: if upload.name.endswith('.csv'): raw_df = pd.read_csv(upload) elif upload.name.endswith(('.xls', '.xlsx')): raw_df = pd.read_excel(upload) else: st.error('Please upload either a CSV or Excel file') return None df = raw_df[['EntryId', 'EntryName', 'TimeRemaining', 'Points', 'Lineup', 'Player', 'Roster Position', '%Drafted', 'FPTS']] df = df.rename(columns={'Roster Position': 'Pos', '%Drafted': 'Own'}) # Split the lineup string by replacing position indicators with commas # We need to ensure we only replace position indicators that are at the start of a player entry # and not those that might appear within player names df['Lineup'] = df['Lineup'].str.replace(r'\b(' + '|'.join(pos_values) + r')\b', r'\1,', regex=True) # Split into individual columns and remove position indicators for i in range(0,11): df[i] = df['Lineup'].str.split(',').str[i].str.strip() # Remove position indicators from the end of each entry df[i] = df[i].str.replace(r'\s+(' + '|'.join(pos_values) + r')$', '', regex=True) position_dict = dict(zip(df['Player'], df['Pos'])) ownership_dict = dict(zip(df['Player'], df['Own'])) entry_list = list(set(df['EntryName'])) entry_list.sort() return df, position_dict, ownership_dict, entry_list except Exception as e: st.error(f'Error loading file: {str(e)}') return None return None