import streamlit as st import pandas as pd def load_contest_file(upload, sport): pos_values = ['P', 'C', '1B', '2B', '3B', 'SS', 'OF'] if upload is not None: try: try: if upload.name.endswith('.csv'): raw_df = pd.read_csv(upload) elif upload.name.endswith(('.xls', '.xlsx')): raw_df = pd.read_excel(upload) else: st.error('Please upload either a CSV or Excel file') return None except: raw_df = upload df = raw_df[['EntryId', 'EntryName', 'TimeRemaining', 'Points', 'Lineup', 'Player', 'Roster Position', '%Drafted', 'FPTS', 'Salary', 'Team']] df = df.rename(columns={'Roster Position': 'Pos', '%Drafted': 'Own'}) # Split EntryName into base name and entry count df['BaseName'] = df['EntryName'].str.replace(r'\s*\(\d+/\d+\)$', '', regex=True) df['EntryCount'] = df['EntryName'].str.extract(r'\((\d+/\d+)\)') df['EntryCount'] = df['EntryCount'].fillna('1/1') # Default to 1/1 if no entry count # Split the lineup string by replacing position indicators with commas # We need to ensure we only replace position indicators that are at the start of a player entry # and not those that might appear within player names df['Lineup'] = df['Lineup'].str.replace(r'\b(' + '|'.join(pos_values) + r')\b', r'\1,', regex=True) # Split into individual columns and remove position indicators # First, determine the maximum number of players in any lineup max_players = int(df['Lineup'].str.split(',').str.len().max()) if max_players <= 0: st.error('No valid lineups found in the uploaded file') return None # Create columns for each player for i in range(1, max_players): df[i] = df['Lineup'].str.split(',').str[i].str.strip() # Remove position indicators from the end of each entry df[i] = df[i].str.replace(r'\s+(' + '|'.join(pos_values) + r')$', '', regex=True) # Replace None with -1 df[i] = df[i].fillna('-1') if sport == 'MLB': df = df.rename(columns={1: '1B', 2: '2B', 3: '3B', 4: 'C', 5: 'OF1', 6: 'OF2', 7: 'OF3', 8: 'SP1', 9: 'SP2', 10: 'SS'}) try: df['Own'] = df['Own'].str.replace('%', '').astype(float) except: df['Own'] = df['Own'].astype(float) ownership_df = df[['Player', 'Own']] fpts_df = df[['Player', 'FPTS']] salary_df = df[['Player', 'Salary']] team_df = df[['Player', 'Team']] pos_df = df[['Player', 'Pos']] # Create position mapping dictionary pos_dict = dict(zip(pos_df['Player'], pos_df['Pos'])) # Debug prints print("\nPosition Dictionary:") print(pos_dict) print("\nSample Lineup String:") print(df['Lineup'].iloc[0]) # Print first lineup # Function to check if player is eligible for position def is_eligible_for_position(player, target_pos): if player not in pos_dict: print(f"Player not found in pos_dict: {player}") return False player_positions = pos_dict[player].split('/') print(f"Checking {player} for {target_pos}. Player positions: {player_positions}") # Handle special cases if target_pos.startswith('SP') and 'P' in player_positions: return True if target_pos.startswith('OF') and 'OF' in player_positions: return True return target_pos in player_positions # Process each lineup for idx, row in df.iterrows(): # Get all players in the lineup players = row['Lineup'].split(',') players = [p.strip() for p in players if p.strip()] print(f"\nProcessing lineup {idx}:") print(f"Players found: {players}") # First pass: fill required positions (excluding OF) required_positions = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS'] for pos in required_positions: for player in players: if is_eligible_for_position(player, pos): print(f"Assigning {player} to {pos}") df.at[idx, pos] = player players.remove(player) break else: print(f"No player found for {pos}") # Second pass: fill OF positions with remaining players of_positions = ['OF1', 'OF2', 'OF3'] for pos in of_positions: for player in players: if 'OF' in pos_dict.get(player, '').split('/'): print(f"Assigning {player} to {pos}") df.at[idx, pos] = player players.remove(player) break else: print(f"No player found for {pos}, using -1") df.at[idx, pos] = '-1' cleaned_df = df.drop(columns=['EntryId', 'EntryName', 'TimeRemaining', 'Points', 'Lineup', 'Player', 'Pos', 'Own', 'FPTS', 'Salary', 'Team']) cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']] entry_list = list(set(df['BaseName'])) entry_list.sort() return cleaned_df, ownership_df, fpts_df, salary_df, team_df, pos_df, entry_list except Exception as e: st.error(f'Error loading file: {str(e)}') return None return None