import streamlit as st st.set_page_config(layout="wide") import numpy as np import pandas as pd from rapidfuzz import process, fuzz from collections import Counter from pymongo.mongo_client import MongoClient from pymongo.server_api import ServerApi from datetime import datetime def init_conn(): uri = st.secrets['mongo_uri'] client = MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) db = client['Contest_Information'] return db def grab_contest_names(db, sport, type): if type == 'Classic': db_type = 'reg' elif type == 'Showdown': db_type = 'sd' collection = db[f'{sport}_{db_type}_contest_info'] cursor = collection.find() curr_info = pd.DataFrame(list(cursor)).drop('_id', axis=1) curr_info['Date'] = pd.to_datetime(curr_info['Contest Date'].sort_values(ascending = False)) curr_info['Date'] = curr_info['Date'].dt.strftime('%Y-%m-%d') contest_names = curr_info['Contest Name'] contest_id_map = dict(zip(curr_info['Contest Name'], curr_info['Contest ID'])) return contest_names, contest_id_map, curr_info def grab_contest_player_info(db, sport, type, contest_date, contest_name, contest_id_map): if type == 'Classic': db_type = 'reg' elif type == 'Showdown': db_type = 'showdown' collection = db[f'{sport}_{db_type}_player_info'] cursor = collection.find() player_info = pd.DataFrame(list(cursor)).drop('_id', axis=1) player_info = player_info[player_info['Contest Date'] == contest_date] try: player_info = player_info[player_info['Contest ID'] == contest_id_map[contest_name]] except: pass player_info = player_info.rename(columns={'Display Name': 'Player'}) player_info = player_info.sort_values(by='Salary', ascending=True).drop_duplicates(subset='Player', keep='first') info_maps = { 'position_dict': dict(zip(player_info['Player'], player_info['Position'])), 'salary_dict': dict(zip(player_info['Player'], player_info['Salary'])), 'team_dict': dict(zip(player_info['Player'], player_info['Team'])), 'opp_dict': dict(zip(player_info['Player'], player_info['Opp'])), 'fpts_avg_dict': dict(zip(player_info['Player'], player_info['Avg FPTS'])) } return player_info, info_maps db = init_conn() ## import global functions from global_func.load_contest_file import load_contest_file from global_func.create_player_exposures import create_player_exposures from global_func.create_stack_exposures import create_stack_exposures from global_func.create_stack_size_exposures import create_stack_size_exposures from global_func.create_general_exposures import create_general_exposures from global_func.grab_contest_data import grab_contest_data def is_valid_input(file): if isinstance(file, pd.DataFrame): return not file.empty else: return file is not None # For Streamlit uploader objects player_exposure_format = {'Exposure Overall': '{:.2%}', 'Exposure Top 1%': '{:.2%}', 'Exposure Top 5%': '{:.2%}', 'Exposure Top 10%': '{:.2%}', 'Exposure Top 20%': '{:.2%}'} tab1, tab2 = st.tabs(["Data Load", "Contest Analysis"]) with tab1: col1, col2 = st.columns(2) with col1: if st.button('Clear data', key='reset1'): st.session_state.clear() search_options, sport_options, date_options = st.columns(3) with search_options: parse_type = st.selectbox("Manual upload or DB search?", ['DB Search', 'Manual'], key='parse_type') with sport_options: sport_select = st.selectbox("Select Sport", ['MLB', 'MMA', 'GOLF'], key='sport_select') type_var = st.selectbox("Select Game Type", ['Classic', 'Showdown'], key='type_var') contest_names, contest_id_map, curr_info = grab_contest_names(db, sport_select, type_var) with date_options: date_list = curr_info['Date'].sort_values(ascending=False).unique() date_list = date_list[date_list != pd.Timestamp.today().strftime('%Y-%m-%d')] date_select = st.selectbox("Select Date", date_list, key='date_select') date_select2 = (pd.to_datetime(date_select) + pd.Timedelta(days=1)).strftime('%Y-%m-%d') name_parse = curr_info[curr_info['Date'] == date_select]['Contest Name'].reset_index(drop=True) date_select = date_select.replace('-', '') date_select2 = date_select2.replace('-', '') contest_name_var = st.selectbox("Select Contest to load", name_parse) if parse_type == 'DB Search': if 'Contest_file_helper' in st.session_state: del st.session_state['Contest_file_helper'] if 'Contest_file' in st.session_state: del st.session_state['Contest_file'] if 'Contest_file' not in st.session_state: if st.button('Load Contest Data', key='load_contest_data'): st.session_state['player_info'], st.session_state['info_maps'] = grab_contest_player_info(db, sport_select, type_var, date_select, contest_name_var, contest_id_map) st.session_state['Contest_file'] = grab_contest_data(sport_select, contest_name_var, contest_id_map, date_select, date_select2) else: pass with col2: st.info(f"If you are manually loading and do not have the results CSV for the contest you selected, you can find it here: https://www.draftkings.com/contest/gamecenter/{contest_id_map[contest_name_var]}#/") if parse_type == 'Manual': if 'Contest_file_helper' in st.session_state: del st.session_state['Contest_file_helper'] if 'Contest_file' in st.session_state: del st.session_state['Contest_file'] if 'Contest_file' not in st.session_state: st.session_state['Contest_upload'] = st.file_uploader("Upload Contest File (CSV or Excel)", type=['csv', 'xlsx', 'xls']) st.session_state['player_info'], st.session_state['info_maps'] = grab_contest_player_info(db, sport_select, type_var, date_select, contest_name_var, contest_id_map) try: st.session_state['Contest_file'] = pd.read_csv(st.session_state['Contest_upload']) except: st.warning('Please upload a Contest CSV') else: pass if 'Contest_file' in st.session_state: st.session_state['Contest'], st.session_state['ownership_df'], st.session_state['actual_df'], st.session_state['entry_list'], check_lineups = load_contest_file(st.session_state['Contest_file'], type_var, st.session_state['player_info'], sport_select) st.session_state['Contest'] = st.session_state['Contest'].dropna(how='all') st.session_state['Contest'] = st.session_state['Contest'].reset_index(drop=True) if st.session_state['Contest'] is not None: st.success('Contest file loaded successfully!') st.dataframe(st.session_state['Contest'].head(100)) if 'Contest_file' in st.session_state: st.session_state['ownership_dict'] = dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own'])) st.session_state['actual_dict'] = dict(zip(st.session_state['actual_df']['Player'], st.session_state['actual_df']['FPTS'])) if 'Contest_file_helper' not in st.session_state: st.session_state['salary_dict'] = st.session_state['info_maps']['salary_dict'] st.session_state['team_dict'] = st.session_state['info_maps']['team_dict'] st.session_state['pos_dict'] = st.session_state['info_maps']['position_dict'] else: st.session_state['salary_dict'] = dict(zip(st.session_state['salary_df']['Player'], st.session_state['salary_df']['Salary'])) st.session_state['team_dict'] = dict(zip(st.session_state['team_df']['Player'], st.session_state['team_df']['Team'])) st.session_state['pos_dict'] = dict(zip(st.session_state['pos_df']['Player'], st.session_state['pos_df']['Pos'])) with tab2: excluded_cols = ['BaseName', 'EntryCount'] if 'Contest' in st.session_state: player_columns = [col for col in st.session_state['Contest'].columns if col not in excluded_cols] for col in player_columns: st.session_state['Contest'][col] = st.session_state['Contest'][col].astype(str) # Create mapping dictionaries map_dict = { 'pos_map': st.session_state['pos_dict'], 'team_map': st.session_state['team_dict'], 'salary_map': st.session_state['salary_dict'], 'own_map': st.session_state['ownership_dict'], 'own_percent_rank': dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own'].rank(pct=True))) } # Create a copy of the dataframe for calculations working_df = st.session_state['Contest'].copy() if type_var == 'Classic': working_df['stack'] = working_df.apply( lambda row: Counter( map_dict['team_map'].get(player, '') for player in row[4:] if map_dict['team_map'].get(player, '') != '' ).most_common(1)[0][0] if any(map_dict['team_map'].get(player, '') for player in row[4:]) else '', axis=1 ) working_df['stack_size'] = working_df.apply( lambda row: Counter( map_dict['team_map'].get(player, '') for player in row[4:] if map_dict['team_map'].get(player, '') != '' ).most_common(1)[0][1] if any(map_dict['team_map'].get(player, '') for player in row[4:]) else '', axis=1 ) working_df['salary'] = working_df.apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1) working_df['actual_fpts'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row), axis=1) working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1) working_df['sorted'] = working_df[player_columns].apply( lambda row: ','.join(sorted(row.values)), axis=1 ) working_df['dupes'] = working_df.groupby('sorted').transform('size') working_df = working_df.reset_index() working_df['percentile_finish'] = working_df['index'].rank(pct=True) working_df['finish'] = working_df['index'] working_df = working_df.drop(['sorted', 'index'], axis=1) elif type_var == 'Showdown': working_df['stack'] = working_df.apply( lambda row: Counter( map_dict['team_map'].get(player, '') for player in row[2:] if map_dict['team_map'].get(player, '') != '' ).most_common(1)[0][0] if any(map_dict['team_map'].get(player, '') for player in row[2:]) else '', axis=1 ) working_df['stack_size'] = working_df.apply( lambda row: Counter( map_dict['team_map'].get(player, '') for player in row[2:] if map_dict['team_map'].get(player, '') != '' ).most_common(1)[0][1] if any(map_dict['team_map'].get(player, '') for player in row[2:]) else '', axis=1 ) # Modified salary calculation with 1.5x multiplier for first player working_df['salary'] = working_df.apply( lambda row: (map_dict['salary_map'].get(row[2], 0) * 1.5) + sum(map_dict['salary_map'].get(player, 0) for player in row[3:]), axis=1 ) # Modified actual_fpts calculation with 1.5x multiplier for first player working_df['actual_fpts'] = working_df.apply( lambda row: (st.session_state['actual_dict'].get(row[2], 0) * 1.5) + sum(st.session_state['actual_dict'].get(player, 0) for player in row[3:]), axis=1 ) working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1) working_df['sorted'] = working_df[player_columns].apply( lambda row: ','.join(sorted(row.values)), axis=1 ) working_df['dupes'] = working_df.groupby('sorted').transform('size') working_df = working_df.reset_index() working_df['percentile_finish'] = working_df['index'].rank(pct=True) working_df['finish'] = working_df['index'] working_df = working_df.drop(['sorted', 'index'], axis=1) st.session_state['field_player_frame'] = create_player_exposures(working_df, player_columns) st.session_state['field_stack_frame'] = create_stack_exposures(working_df) with st.expander("Info and filters"): if st.button('Clear data', key='reset3'): st.session_state.clear() with st.form(key='filter_form'): entry_parse_var = st.selectbox("Do you want to view a specific player(s) or a group of players?", ['All', 'Specific']) entry_names = st.multiselect("Select players", options=st.session_state['entry_list'], default=[]) submitted = st.form_submit_button("Submit") if submitted: if 'player_frame' in st.session_state: del st.session_state['player_frame'] if 'stack_frame' in st.session_state: del st.session_state['stack_frame'] # Apply entry name filter if specific entries are selected if entry_parse_var == 'Specific' and entry_names: working_df = working_df[working_df['BaseName'].isin(entry_names)] # Initialize pagination in session state if not exists if 'current_page' not in st.session_state: st.session_state.current_page = 1 # Calculate total pages rows_per_page = 500 total_rows = len(working_df) total_pages = (total_rows + rows_per_page - 1) // rows_per_page # Create pagination controls in a single row pagination_cols = st.columns([4, 1, 1, 1, 4]) with pagination_cols[1]: if st.button(f"Previous Page"): if st.session_state['current_page'] > 1: st.session_state.current_page -= 1 else: st.session_state.current_page = 1 if 'player_frame' in st.session_state: del st.session_state['player_frame'] if 'stack_frame' in st.session_state: del st.session_state['stack_frame'] with pagination_cols[3]: if st.button(f"Next Page"): st.session_state.current_page += 1 if 'player_frame' in st.session_state: del st.session_state['player_frame'] if 'stack_frame' in st.session_state: del st.session_state['stack_frame'] # Calculate start and end indices for current page start_idx = (st.session_state.current_page - 1) * rows_per_page end_idx = min((st.session_state.current_page) * rows_per_page, total_rows) st.dataframe( working_df.iloc[start_idx:end_idx].style .background_gradient(axis=0) .background_gradient(cmap='RdYlGn') .format(precision=2), height=500, use_container_width=True, hide_index=True ) with st.container(): tab1, tab2, tab3, tab4 = st.tabs(['Player Used Info', 'Stack Used Info', 'Stack Size Info', 'General Info']) with tab1: col1, col2 = st.columns(2) with col1: pos_var = st.selectbox("Which position(s) would you like to view?", ['All', 'Specific'], key='pos_var') with col2: if pos_var == 'Specific': pos_select = st.multiselect("Select your position(s)", ['P', 'C', '1B', '2B', '3B', 'SS', 'OF'], key='pos_select') else: pos_select = None if entry_parse_var == 'All': st.session_state['player_frame'] = create_player_exposures(working_df, player_columns) hold_frame = st.session_state['player_frame'].copy() if sport_select == 'GOLF': hold_frame['Pos'] = 'G' else: hold_frame['Pos'] = hold_frame['Player'].map(map_dict['pos_map']) st.session_state['player_frame'].insert(1, 'Pos', hold_frame['Pos']) st.session_state['player_frame'] = st.session_state['player_frame'].dropna(subset=['Pos']) if pos_select: position_mask = st.session_state['player_frame']['Pos'].apply(lambda x: any(pos in x for pos in pos_select)) st.session_state['player_frame'] = st.session_state['player_frame'][position_mask] st.dataframe(st.session_state['player_frame']. sort_values(by='Exposure Overall', ascending=False). style.background_gradient(cmap='RdYlGn'). format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 2:].select_dtypes(include=['number']).columns), hide_index=True) else: st.session_state['player_frame'] = create_player_exposures(working_df, player_columns, entry_names) hold_frame = st.session_state['player_frame'].copy() if sport_select == 'GOLF': hold_frame['Pos'] = 'G' else: hold_frame['Pos'] = hold_frame['Player'].map(map_dict['pos_map']) st.session_state['player_frame'].insert(1, 'Pos', hold_frame['Pos']) st.session_state['player_frame'] = st.session_state['player_frame'].dropna(subset=['Pos']) if pos_select: position_mask = st.session_state['player_frame']['Pos'].apply(lambda x: any(pos in x for pos in pos_select)) st.session_state['player_frame'] = st.session_state['player_frame'][position_mask] st.dataframe(st.session_state['player_frame']. sort_values(by='Exposure Overall', ascending=False). style.background_gradient(cmap='RdYlGn'). format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 2:].select_dtypes(include=['number']).columns), hide_index=True) with tab2: if entry_parse_var == 'All': st.session_state['stack_frame'] = create_stack_exposures(working_df) st.dataframe(st.session_state['stack_frame']. sort_values(by='Exposure Overall', ascending=False). style.background_gradient(cmap='RdYlGn'). format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns), hide_index=True) else: st.session_state['stack_frame'] = create_stack_exposures(working_df, entry_names) st.dataframe(st.session_state['stack_frame']. sort_values(by='Exposure Overall', ascending=False). style.background_gradient(cmap='RdYlGn'). format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns), hide_index=True) with tab3: if entry_parse_var == 'All': st.session_state['stack_size_frame'] = create_stack_size_exposures(working_df) st.dataframe(st.session_state['stack_size_frame']. sort_values(by='Exposure Overall', ascending=False). style.background_gradient(cmap='RdYlGn'). format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns), hide_index=True) else: st.session_state['stack_size_frame'] = create_stack_size_exposures(working_df, entry_names) st.dataframe(st.session_state['stack_size_frame']. sort_values(by='Exposure Overall', ascending=False). style.background_gradient(cmap='RdYlGn'). format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns), hide_index=True) with tab4: if entry_parse_var == 'All': st.session_state['general_frame'] = create_general_exposures(working_df) st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True) else: st.session_state['general_frame'] = create_general_exposures(working_df, entry_names) st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True)