import streamlit as st st.set_page_config(layout="wide") import numpy as np import pandas as pd import time from fuzzywuzzy import process from collections import Counter ## import global functions from global_func.clean_player_name import clean_player_name from global_func.load_contest_file import load_contest_file from global_func.load_file import load_file from global_func.load_ss_file import load_ss_file from global_func.find_name_mismatches import find_name_mismatches from global_func.predict_dupes import predict_dupes from global_func.highlight_rows import highlight_changes, highlight_changes_winners, highlight_changes_losers from global_func.load_csv import load_csv from global_func.find_csv_mismatches import find_csv_mismatches player_exposure_format = {'Exposure Overall': '{:.2%}', 'Exposure Top 1%': '{:.2%}', 'Exposure Top 5%': '{:.2%}', 'Exposure Top 10%': '{:.2%}', 'Exposure Top 20%': '{:.2%}'} tab1, tab2 = st.tabs(["Data Load", "Contest Analysis"]) with tab1: if st.button('Clear data', key='reset1'): st.session_state.clear() sport_select = st.selectbox("Select Sport", ['MLB', 'NBA', 'NFL']) # Add file uploaders to your app col1, col2 = st.columns(2) with col1: st.subheader("Contest File") st.info("Go ahead and upload a Contest file here. Only include player columns and an optional 'Stack' column if you are playing MLB.") Contest_file = st.file_uploader("Upload Contest File (CSV or Excel)", type=['csv', 'xlsx', 'xls']) if 'Contest' in st.session_state: del st.session_state['Contest'] if Contest_file: st.session_state['Contest'], st.session_state['ownership_dict'], st.session_state['actual_dict'], st.session_state['entry_list'] = load_contest_file(Contest_file, sport_select) st.session_state['Contest'] = st.session_state['Contest'].dropna(how='all') st.session_state['Contest'] = st.session_state['Contest'].reset_index(drop=True) if st.session_state['Contest'] is not None: st.success('Contest file loaded successfully!') st.dataframe(st.session_state['Contest'].head(10)) with col2: st.subheader("Projections File") st.info("upload a projections file that has 'player_names', 'salary', 'median', 'ownership', and 'captain ownership' (Needed for Showdown) columns. Note that the salary for showdown needs to be the FLEX salary, not the captain salary.") # Create two columns for the uploader and template button upload_col, template_col = st.columns([3, 1]) with upload_col: projections_file = st.file_uploader("Upload Projections File (CSV or Excel)", type=['csv', 'xlsx', 'xls']) if 'projections_df' in st.session_state: del st.session_state['projections_df'] with template_col: # Create empty DataFrame with required columns template_df = pd.DataFrame(columns=['player_names', 'position', 'team', 'salary', 'median', 'ownership', 'captain ownership']) # Add download button for template st.download_button( label="Template", data=template_df.to_csv(index=False), file_name="projections_template.csv", mime="text/csv" ) if projections_file: export_projections, projections = load_file(projections_file) if projections is not None: st.success('Projections file loaded successfully!') st.dataframe(projections.head(10)) if Contest_file and projections_file: if st.session_state['Contest'] is not None and projections is not None: st.subheader("Name Matching functions") # Initialize projections_df in session state if it doesn't exist if 'projections_df' not in st.session_state: st.session_state['projections_df'] = projections.copy() st.session_state['projections_df']['salary'] = (st.session_state['projections_df']['salary'].astype(str).str.replace(',', '').astype(float).astype(int)) # Run name matching only once when first loading the files st.session_state['Contest'], st.session_state['projections_df'], st.session_state['ownership_dict'], st.session_state['actual_dict'] = find_name_mismatches(st.session_state['Contest'], st.session_state['projections_df'], st.session_state['ownership_dict'], st.session_state['actual_dict']) with tab2: if 'Contest' in st.session_state and 'projections_df' in st.session_state: col1, col2 = st.columns([1, 8]) excluded_cols = ['BaseName', 'EntryCount'] player_columns = [col for col in st.session_state['Contest'].columns if col not in excluded_cols] # Create mapping dictionaries map_dict = { 'pos_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])), 'team_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])), 'salary_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])), 'proj_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])), 'own_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])), 'own_percent_rank': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))), 'cpt_salary_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])), 'cpt_proj_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)), 'cpt_own_map': dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership'])) } # Create a copy of the dataframe for calculations working_df = st.session_state['Contest'].copy() with col1: with st.expander("Info and filters"): if st.button('Clear data', key='reset3'): st.session_state.clear() with st.form(key='filter_form'): type_var = st.selectbox("Select Game Type", ['Classic', 'Showdown']) entry_parse_var = st.selectbox("Do you want to view a specific player(s) or a group of players?", ['All', 'Specific']) entry_names = st.multiselect("Select players", options=st.session_state['entry_list'], default=[]) submitted = st.form_submit_button("Submit") if submitted: if 'player_frame' in st.session_state: del st.session_state['player_frame'] del st.session_state['stack_frame'] # Apply entry name filter if specific entries are selected if entry_parse_var == 'Specific' and entry_names: working_df = working_df[working_df['BaseName'].isin(entry_names)] # Calculate metrics based on game type if type_var == 'Classic': working_df['stack'] = working_df.apply( lambda row: Counter( map_dict['team_map'].get(player, '') for player in row[4:] if map_dict['team_map'].get(player, '') != '' ).most_common(1)[0][0] if any(map_dict['team_map'].get(player, '') for player in row[4:]) else '', axis=1 ) working_df['stack_size'] = working_df.apply( lambda row: Counter( map_dict['team_map'].get(player, '') for player in row[4:] if map_dict['team_map'].get(player, '') != '' ).most_common(1)[0][1] if any(map_dict['team_map'].get(player, '') for player in row[4:]) else '', axis=1 ) working_df['salary'] = working_df.apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1) working_df['median'] = working_df.apply(lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row), axis=1) working_df['actual_fpts'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row), axis=1) working_df['Own'] = working_df.apply(lambda row: sum(map_dict['own_map'].get(player, 0) for player in row), axis=1) working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1) working_df['sorted'] = working_df[player_columns].apply( lambda row: ','.join(sorted(row.values)), axis=1 ) working_df['dupes'] = working_df.groupby('sorted').transform('size') working_df = working_df.drop('sorted', axis=1) elif type_var == 'Showdown': working_df['stack'] = working_df.apply( lambda row: Counter( map_dict['team_map'].get(player, '') for player in row if map_dict['team_map'].get(player, '') != '' ).most_common(1)[0][0] if any(map_dict['team_map'].get(player, '') for player in row) else '', axis=1 ) working_df['stack_size'] = working_df.apply( lambda row: Counter( map_dict['team_map'].get(player, '') for player in row if map_dict['team_map'].get(player, '') != '' ).most_common(1)[0][1] if any(map_dict['team_map'].get(player, '') for player in row) else '', axis=1 ) working_df['salary'] = working_df.apply( lambda row: map_dict['cpt_salary_map'].get(row.iloc[0], 0) + sum(map_dict['salary_map'].get(player, 0) for player in row.iloc[1:]), axis=1 ) working_df['median'] = working_df.apply( lambda row: map_dict['cpt_proj_map'].get(row.iloc[0], 0) + sum(map_dict['proj_map'].get(player, 0) for player in row.iloc[1:]), axis=1 ) working_df['Own'] = working_df.apply( lambda row: map_dict['cpt_own_map'].get(row.iloc[0], 0) + sum(map_dict['own_map'].get(player, 0) for player in row.iloc[1:]), axis=1 ) working_df['sorted'] = working_df[player_columns].apply( lambda row: row[0] + '|' + ','.join(sorted(row[1:].values)), axis=1 ) working_df['dupes'] = working_df.groupby('sorted').transform('size') working_df = working_df.drop('sorted', axis=1) # Initialize pagination in session state if not exists if 'current_page' not in st.session_state: st.session_state.current_page = 0 # Calculate total pages rows_per_page = 500 total_rows = len(working_df) total_pages = (total_rows + rows_per_page - 1) // rows_per_page # Create pagination controls in a single row pagination_cols = st.columns([4, 1, 1, 1, 4]) with pagination_cols[1]: if st.button("← Previous", disabled=st.session_state.current_page == 0): st.session_state.current_page -= 1 if 'player_frame' in st.session_state: del st.session_state['player_frame'] del st.session_state['stack_frame'] with pagination_cols[2]: st.markdown(f"**Page {st.session_state.current_page + 1} of {total_pages}**", unsafe_allow_html=True) with pagination_cols[3]: if st.button("Next →", disabled=st.session_state.current_page == total_pages - 1): st.session_state.current_page += 1 if 'player_frame' in st.session_state: del st.session_state['player_frame'] del st.session_state['stack_frame'] # Calculate start and end indices for current page start_idx = st.session_state.current_page * rows_per_page end_idx = min((st.session_state.current_page + 1) * rows_per_page, total_rows) st.dataframe( working_df.iloc[start_idx:end_idx].style .background_gradient(axis=0) .background_gradient(cmap='RdYlGn') .format(precision=2), height=1000, use_container_width=True, hide_index=True ) for col in player_columns: contest_players = working_df.copy() players_1per = working_df.nlargest(n=int(len(working_df) * 0.01), columns='actual_fpts') players_5per = working_df.nlargest(n=int(len(working_df) * 0.05), columns='actual_fpts') players_10per = working_df.nlargest(n=int(len(working_df) * 0.10), columns='actual_fpts') players_20per = working_df.nlargest(n=int(len(working_df) * 0.20), columns='actual_fpts') player_counts = pd.Series(list(contest_players[player_columns].values.flatten())).value_counts() player_1per_counts = pd.Series(list(players_1per[player_columns].values.flatten())).value_counts() player_5per_counts = pd.Series(list(players_5per[player_columns].values.flatten())).value_counts() player_10per_counts = pd.Series(list(players_10per[player_columns].values.flatten())).value_counts() player20_per_counts = pd.Series(list(players_20per[player_columns].values.flatten())).value_counts() stack_counts = pd.Series(list(contest_players['stack'])).value_counts() stack_1per_counts = pd.Series(list(players_1per['stack'])).value_counts() stack_5per_counts = pd.Series(list(players_5per['stack'])).value_counts() stack_10per_counts = pd.Series(list(players_10per['stack'])).value_counts() stack_20per_counts = pd.Series(list(players_20per['stack'])).value_counts() each_set_name = ['Overall', ' Top 1%', ' Top 5%', 'Top 10%', 'Top 20%'] each_frame_set = [contest_players, players_1per, players_5per, players_10per, players_20per] with st.container(): tab1, tab2 = st.tabs(['Player Used Info', 'Stack Used Info']) with tab1: player_count_var = 0 for each_set in [player_counts, player_1per_counts, player_5per_counts, player_10per_counts, player20_per_counts]: set_frame = each_set.to_frame().reset_index().rename(columns={'index': 'Player', 'count': 'Count'}) set_frame['Percent'] = set_frame['Count'] / len(each_frame_set[player_count_var]) set_frame = set_frame[['Player', 'Percent']] set_frame = set_frame.rename(columns={'Percent': f'Exposure {each_set_name[player_count_var]}'}) if 'player_frame' not in st.session_state: st.session_state['player_frame'] = set_frame else: st.session_state['player_frame'] = pd.merge(st.session_state['player_frame'], set_frame, on='Player', how='outer') player_count_var += 1 st.dataframe(st.session_state['player_frame']. sort_values(by='Exposure Overall', ascending=False). style.background_gradient(cmap='RdYlGn'). format(formatter='{:.2%}', subset=st.session_state['player_frame'].select_dtypes(include=['number']).columns), hide_index=True) with tab2: stack_count_var = 0 for each_set in [stack_counts, stack_1per_counts, stack_5per_counts, stack_10per_counts, stack_20per_counts]: set_frame = each_set.to_frame().reset_index().rename(columns={'index': 'Stack', 'count': 'Count'}) set_frame['Percent'] = set_frame['Count'] / len(each_frame_set[stack_count_var]) set_frame = set_frame[['Stack', 'Percent']] set_frame = set_frame.rename(columns={'Percent': f'Exposure {each_set_name[stack_count_var]}'}) if 'stack_frame' not in st.session_state: st.session_state['stack_frame'] = set_frame else: st.session_state['stack_frame'] = pd.merge(st.session_state['stack_frame'], set_frame, on='Stack', how='outer') stack_count_var += 1 st.dataframe(st.session_state['stack_frame']. sort_values(by='Exposure Overall', ascending=False). style.background_gradient(cmap='RdYlGn'). format(formatter='{:.2%}', subset=st.session_state['stack_frame'].select_dtypes(include=['number']).columns), hide_index=True)