File size: 2,855 Bytes
cc0edce
 
 
206da8c
efb1867
cc0edce
 
 
 
e8898ed
 
 
 
 
 
 
cc0edce
e8898ed
 
 
 
 
 
 
 
 
 
 
 
cc0edce
 
e8898ed
cc0edce
efb1867
cc0edce
 
efb1867
cc0edce
 
efb1867
cc0edce
 
 
e8898ed
cc0edce
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import pandas as pd
import numpy as np

def volatility_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols: list, sport: str):
    excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Diversity']
    player_columns = [col for col in portfolio.columns if col not in excluded_cols]

    for slack_var in range(1, 20):
        concat_portfolio = pd.DataFrame(columns=portfolio.columns)
        if sport == 'MLB':
            for team in portfolio['Stack'].unique():
                rows_to_drop = []
                working_portfolio = portfolio.copy()
                working_portfolio = working_portfolio[working_portfolio['Stack'] == team].sort_values(by='Lineup Edge', ascending = False)
                working_portfolio = working_portfolio.reset_index(drop=True)
                curr_own_type_max = working_portfolio.loc[0, 'Diversity'] + (slack_var / 20 * working_portfolio.loc[0, 'Diversity'])

                for i in range(1, len(working_portfolio)):
                    if working_portfolio.loc[i, 'Diversity'] < curr_own_type_max:
                        rows_to_drop.append(i)
                    else:
                        curr_own_type_max = working_portfolio.loc[i, 'Diversity'] + (slack_var / 20 * working_portfolio.loc[i, 'Diversity'])

                working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
                concat_portfolio = pd.concat([concat_portfolio, working_portfolio])
            
            if len(concat_portfolio) >= lineup_target:
                return concat_portfolio.sort_values(by='Lineup Edge', ascending=False).head(lineup_target)
        else:
            rows_to_drop = []
            working_portfolio = portfolio.copy()
            working_portfolio = working_portfolio.sort_values(by='Lineup Edge', ascending = False)
            working_portfolio = working_portfolio.reset_index(drop=True)
            curr_own_type_max = working_portfolio.loc[0, 'Diversity'] + (slack_var / 20 * working_portfolio.loc[0, 'Diversity'])

            for i in range(1, len(working_portfolio)):
                if working_portfolio.loc[i, 'Diversity'] < curr_own_type_max:
                    rows_to_drop.append(i)
                else:
                    curr_own_type_max = working_portfolio.loc[i, 'Diversity'] + (slack_var / 20 * working_portfolio.loc[i, 'Diversity'])

            working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
            concat_portfolio = pd.concat([concat_portfolio, working_portfolio])

        if len(concat_portfolio) >= lineup_target:
            return concat_portfolio.sort_values(by='Lineup Edge', ascending=False).head(lineup_target)
        
    return concat_portfolio.sort_values(by='Lineup Edge', ascending=False)