File size: 60,914 Bytes
c1e71a4 2effe9f c65f61f c1e71a4 d1feee2 e0c3b64 0614531 99e9056 c1e71a4 d1feee2 ccc36fc c1e71a4 36a4f29 69e4fc3 bd18063 e1747ca 69e4fc3 feb3149 69e4fc3 feb3149 e2f3e90 0614531 00d1795 fd4e583 00d1795 feb3149 b0b9555 feb3149 5d94e8f feb3149 69e4fc3 1b67fda f32a335 5ae9ba3 f32a335 5ae9ba3 53e1672 5ae9ba3 f32a335 53e1672 e1747ca f32a335 3a7ae3a 895faba 20e7035 895faba 1b67fda 70f0159 1b67fda e1747ca ccc36fc e1747ca 69e4fc3 feb3149 69e4fc3 1b67fda f08ff90 53e1672 f08ff90 e1747ca ccc36fc 8e35500 eaa851e 8e35500 249be69 9af0cf7 8e35500 27e6d5b 8e35500 9af0cf7 8e35500 69e4fc3 36a4f29 0231bd5 2cb4bd9 0231bd5 60e43c7 0231bd5 10eb31b 0231bd5 60e43c7 0231bd5 703c0bc 0231bd5 703c0bc 0231bd5 0562483 0231bd5 703c0bc 0231bd5 00d1795 0231bd5 703c0bc 0231bd5 edfc7a7 0231bd5 edfc7a7 0231bd5 edfc7a7 0231bd5 edfc7a7 0231bd5 edfc7a7 0231bd5 edfc7a7 0231bd5 edfc7a7 0231bd5 edfc7a7 0231bd5 703c0bc 0231bd5 703c0bc 0231bd5 00d1795 0231bd5 00d1795 0231bd5 c65f61f 0231bd5 c65f61f 0231bd5 1807cfe 0231bd5 703c0bc 0231bd5 1807cfe 59c4c13 0231bd5 59c4c13 0231bd5 e3e18b5 0231bd5 703c0bc 0231bd5 1807cfe 59c4c13 0231bd5 59c4c13 0231bd5 c9b59bb 0231bd5 c9b59bb 0231bd5 c9b59bb 59c4c13 0231bd5 59c4c13 0231bd5 00d1795 0231bd5 b40022b 0231bd5 36a4f29 0231bd5 36a4f29 7068b30 e1747ca 8b78599 15bba05 d3aba2f b645a0a 10a7ad2 68d55bd b645a0a e4b8b07 60802c7 e4b8b07 9902a0c bd18063 9902a0c 06422c3 9902a0c 43fe690 1efa340 43fe690 1efa340 43fe690 1efa340 43fe690 e4b8b07 bd18063 7fbfe19 06422c3 7fbfe19 e4b8b07 bd18063 37f8164 e4b8b07 bd18063 e4b8b07 bd18063 e4b8b07 bd18063 e4b8b07 bd18063 8ac7d89 0924d35 8ac7d89 c952d2d cf5c56f 8ac7d89 161f2cc 40c567e 9054585 0924d35 9054585 59d0d43 0924d35 0ca6fd0 0924d35 0e52b5a cf5c56f 9054585 8e17cb4 9054585 5fb9559 9054585 ddcaf58 d3aba2f 04ae2dd ba359a4 04ae2dd c952d2d 3852a15 439ae31 3852a15 439ae31 bad9e99 3852a15 bad9e99 3852a15 68a04df bad9e99 3852a15 2daa4c0 3852a15 bad9e99 3852a15 e184997 3852a15 97f924a 3852a15 439ae31 3852a15 97f924a 3852a15 e184997 3852a15 1f8d35a bad9e99 3852a15 2dfa83b e184997 8c43ae6 4d2caf3 68d55bd 4d2caf3 68d55bd 36a4f29 fcc49f0 e029672 fcc49f0 52b557b fcc49f0 e029672 64951e0 fcc49f0 0bb8be3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 |
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import time
from fuzzywuzzy import process
import random
## import global functions
from global_func.clean_player_name import clean_player_name
from global_func.load_file import load_file
from global_func.load_ss_file import load_ss_file
from global_func.find_name_mismatches import find_name_mismatches
from global_func.predict_dupes import predict_dupes
from global_func.highlight_rows import highlight_changes, highlight_changes_winners, highlight_changes_losers
from global_func.load_csv import load_csv
from global_func.find_csv_mismatches import find_csv_mismatches
freq_format = {'Finish_percentile': '{:.2%}', 'Lineup Edge': '{:.2%}', 'Win%': '{:.2%}'}
player_wrong_names_mlb = ['Enrique Hernandez']
player_right_names_mlb = ['Kike Hernandez']
tab1, tab2, tab3 = st.tabs(["Data Load", "Late Swap", "Manage Portfolio"])
with tab1:
if st.button('Clear data', key='reset1'):
st.session_state.clear()
# Add file uploaders to your app
col1, col2, col3 = st.columns(3)
with col1:
st.subheader("Draftkings/Fanduel CSV")
st.info("Upload the player pricing CSV from the site you are playing on. This is used in late swap exporting and/or with SaberSim portfolios, but is not necessary for the portfolio management functions.")
upload_csv_col, csv_template_col = st.columns([3, 1])
with upload_csv_col:
csv_file = st.file_uploader("Upload CSV File", type=['csv'])
if 'csv_file' in st.session_state:
del st.session_state['csv_file']
with csv_template_col:
csv_template_df = pd.DataFrame(columns=['Name', 'ID', 'Roster Position', 'Salary'])
st.download_button(
label="CSV Template",
data=csv_template_df.to_csv(index=False),
file_name="csv_template.csv",
mime="text/csv"
)
st.session_state['csv_file'] = load_csv(csv_file)
try:
st.session_state['csv_file']['Salary'] = st.session_state['csv_file']['Salary'].astype(str).str.replace(',', '').astype(int)
except:
pass
if csv_file:
st.session_state['csv_file'] = st.session_state['csv_file'].drop_duplicates(subset=['Name'])
st.success('Projections file loaded successfully!')
st.dataframe(st.session_state['csv_file'].head(10))
with col2:
st.subheader("Portfolio File")
st.info("Go ahead and upload a portfolio file here. Only include player columns and an optional 'Stack' column if you are playing MLB.")
saber_toggle = st.radio("Are you uploading from SaberSim?", options=['No', 'Yes'])
st.info("If you are uploading from SaberSim, you will need to upload a CSV file for the slate for name matching.")
if saber_toggle == 'Yes':
if csv_file is not None:
portfolio_file = st.file_uploader("Upload Portfolio File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
if 'portfolio' in st.session_state:
del st.session_state['portfolio']
if 'export_portfolio' in st.session_state:
del st.session_state['export_portfolio']
else:
portfolio_file = st.file_uploader("Upload Portfolio File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
if 'portfolio' in st.session_state:
del st.session_state['portfolio']
if 'export_portfolio' in st.session_state:
del st.session_state['export_portfolio']
if portfolio_file:
if saber_toggle == 'Yes':
st.session_state['export_portfolio'], st.session_state['portfolio'] = load_ss_file(portfolio_file, st.session_state['csv_file'])
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all')
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True)
st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all')
st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True)
else:
st.session_state['export_portfolio'], st.session_state['portfolio'] = load_file(portfolio_file)
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all')
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True)
st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all')
st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True)
# Check if Stack column exists in the portfolio
if 'Stack' in st.session_state['portfolio'].columns:
# Create dictionary mapping index to Stack values
stack_dict = dict(zip(st.session_state['portfolio'].index, st.session_state['portfolio']['Stack']))
st.write(f"Found {len(stack_dict)} stack assignments")
st.session_state['portfolio'] = st.session_state['portfolio'].drop(columns=['Stack'])
else:
stack_dict = None
st.info("No Stack column found in portfolio")
if st.session_state['portfolio'] is not None:
st.success('Portfolio file loaded successfully!')
st.session_state['portfolio'] = st.session_state['portfolio'].apply(lambda x: x.replace(player_wrong_names_mlb, player_right_names_mlb))
st.dataframe(st.session_state['portfolio'].head(10))
with col3:
st.subheader("Projections File")
st.info("upload a projections file that has 'player_names', 'salary', 'median', 'ownership', and 'captain ownership' (Needed for Showdown) columns. Note that the salary for showdown needs to be the FLEX salary, not the captain salary.")
# Create two columns for the uploader and template button
upload_col, template_col = st.columns([3, 1])
with upload_col:
projections_file = st.file_uploader("Upload Projections File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
if 'projections_df' in st.session_state:
del st.session_state['projections_df']
with template_col:
# Create empty DataFrame with required columns
template_df = pd.DataFrame(columns=['player_names', 'position', 'team', 'salary', 'median', 'ownership', 'captain ownership'])
# Add download button for template
st.download_button(
label="Template",
data=template_df.to_csv(index=False),
file_name="projections_template.csv",
mime="text/csv"
)
if projections_file:
export_projections, projections = load_file(projections_file)
if projections is not None:
st.success('Projections file loaded successfully!')
projections = projections.apply(lambda x: x.replace(player_wrong_names_mlb, player_right_names_mlb))
st.dataframe(projections.head(10))
if portfolio_file and projections_file:
if st.session_state['portfolio'] is not None and projections is not None:
st.subheader("Name Matching Analysis")
# Initialize projections_df in session state if it doesn't exist
if 'projections_df' not in st.session_state:
st.session_state['projections_df'] = projections.copy()
st.session_state['projections_df']['salary'] = (st.session_state['projections_df']['salary'].astype(str).str.replace(',', '').astype(float).astype(int))
# Update projections_df with any new matches
st.session_state['projections_df'] = find_name_mismatches(st.session_state['portfolio'], st.session_state['projections_df'])
if csv_file is not None and 'export_dict' not in st.session_state:
# Create a dictionary of Name to Name+ID from csv_file
try:
name_id_map = dict(zip(
st.session_state['csv_file']['Name'],
st.session_state['csv_file']['Name + ID']
))
except:
name_id_map = dict(zip(
st.session_state['csv_file']['Nickname'],
st.session_state['csv_file']['Id']
))
# Function to find best match
def find_best_match(name):
best_match = process.extractOne(name, name_id_map.keys())
if best_match and best_match[1] >= 85: # 85% match threshold
return name_id_map[best_match[0]]
return name # Return original name if no good match found
# Apply the matching
projections['upload_match'] = projections['player_names'].apply(find_best_match)
st.session_state['export_dict'] = dict(zip(projections['player_names'], projections['upload_match']))
with tab2:
if st.button('Clear data', key='reset2'):
st.session_state.clear()
if 'portfolio' in st.session_state and 'projections_df' in st.session_state:
optimized_df = None
map_dict = {
'pos_map': dict(zip(st.session_state['projections_df']['player_names'],
st.session_state['projections_df']['position'])),
'salary_map': dict(zip(st.session_state['projections_df']['player_names'],
st.session_state['projections_df']['salary'])),
'proj_map': dict(zip(st.session_state['projections_df']['player_names'],
st.session_state['projections_df']['median'])),
'own_map': dict(zip(st.session_state['projections_df']['player_names'],
st.session_state['projections_df']['ownership'])),
'team_map': dict(zip(st.session_state['projections_df']['player_names'],
st.session_state['projections_df']['team']))
}
# Calculate new stats for optimized lineups
st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(
lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1
)
st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(
lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1
)
st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(
lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1
)
options_container = st.container()
with options_container:
col1, col2, col3, col4, col5, col6 = st.columns(6)
with col1:
curr_site_var = st.selectbox("Select your current site", options=['DraftKings', 'FanDuel'])
with col2:
curr_sport_var = st.selectbox("Select your current sport", options=['NBA', 'MLB', 'NFL', 'NHL', 'MMA'])
with col3:
swap_var = st.multiselect("Select late swap strategy", options=['Optimize', 'Increase volatility', 'Decrease volatility'])
with col4:
remove_teams_var = st.multiselect("What teams have already played?", options=st.session_state['projections_df']['team'].unique())
with col5:
winners_var = st.multiselect("Are there any players doing exceptionally well?", options=st.session_state['projections_df']['player_names'].unique(), max_selections=3)
with col6:
losers_var = st.multiselect("Are there any players doing exceptionally poorly?", options=st.session_state['projections_df']['player_names'].unique(), max_selections=3)
if st.button('Clear Late Swap'):
if 'optimized_df' in st.session_state:
del st.session_state['optimized_df']
map_dict = {
'pos_map': dict(zip(st.session_state['projections_df']['player_names'],
st.session_state['projections_df']['position'])),
'salary_map': dict(zip(st.session_state['projections_df']['player_names'],
st.session_state['projections_df']['salary'])),
'proj_map': dict(zip(st.session_state['projections_df']['player_names'],
st.session_state['projections_df']['median'])),
'own_map': dict(zip(st.session_state['projections_df']['player_names'],
st.session_state['projections_df']['ownership'])),
'team_map': dict(zip(st.session_state['projections_df']['player_names'],
st.session_state['projections_df']['team']))
}
# Calculate new stats for optimized lineups
st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(
lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1
)
st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(
lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1
)
st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(
lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1
)
if st.button('Run Late Swap'):
st.session_state['portfolio'] = st.session_state['portfolio'].drop(columns=['salary', 'median', 'Own'])
if curr_sport_var == 'NBA':
if curr_site_var == 'DraftKings':
st.session_state['portfolio'] = st.session_state['portfolio'].set_axis(['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL'], axis=1)
else:
st.session_state['portfolio'] = st.session_state['portfolio'].set_axis(['PG', 'PG', 'SG', 'SG', 'SF', 'SF', 'PF', 'PF', 'C'], axis=1)
# Define roster position rules
if curr_site_var == 'DraftKings':
position_rules = {
'PG': ['PG'],
'SG': ['SG'],
'SF': ['SF'],
'PF': ['PF'],
'C': ['C'],
'G': ['PG', 'SG'],
'F': ['SF', 'PF'],
'UTIL': ['PG', 'SG', 'SF', 'PF', 'C']
}
else:
position_rules = {
'PG': ['PG'],
'SG': ['SG'],
'SF': ['SF'],
'PF': ['PF'],
'C': ['C'],
}
# Create position groups from projections data
position_groups = {}
for _, player in st.session_state['projections_df'].iterrows():
positions = player['position'].split('/')
for pos in positions:
if pos not in position_groups:
position_groups[pos] = []
position_groups[pos].append({
'player_names': player['player_names'],
'salary': player['salary'],
'median': player['median'],
'ownership': player['ownership'],
'positions': positions # Store all eligible positions
})
def optimize_lineup(row):
current_lineup = []
total_salary = 0
if curr_site_var == 'DraftKings':
salary_cap = 50000
else:
salary_cap = 60000
used_players = set()
# Convert row to dictionary with roster positions
roster = {}
for col, player in zip(row.index, row):
if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']:
roster[col] = {
'name': player,
'position': map_dict['pos_map'].get(player, '').split('/'),
'team': map_dict['team_map'].get(player, ''),
'salary': map_dict['salary_map'].get(player, 0),
'median': map_dict['proj_map'].get(player, 0),
'ownership': map_dict['own_map'].get(player, 0)
}
total_salary += roster[col]['salary']
used_players.add(player)
# Optimize each roster position in random order
roster_positions = list(roster.items())
random.shuffle(roster_positions)
for roster_pos, current in roster_positions:
# Skip optimization for players from removed teams
if current['team'] in remove_teams_var:
continue
valid_positions = position_rules[roster_pos]
better_options = []
# Find valid replacements for this roster position
for pos in valid_positions:
if pos in position_groups:
pos_options = [
p for p in position_groups[pos]
if p['median'] > current['median']
and (total_salary - current['salary'] + p['salary']) <= salary_cap
and p['player_names'] not in used_players
and any(valid_pos in p['positions'] for valid_pos in valid_positions)
and map_dict['team_map'].get(p['player_names']) not in remove_teams_var # Check team restriction
]
better_options.extend(pos_options)
if better_options:
# Remove duplicates
better_options = {opt['player_names']: opt for opt in better_options}.values()
# Sort by median projection and take the best one
best_replacement = max(better_options, key=lambda x: x['median'])
# Update the lineup and tracking variables
used_players.remove(current['name'])
used_players.add(best_replacement['player_names'])
total_salary = total_salary - current['salary'] + best_replacement['salary']
roster[roster_pos] = {
'name': best_replacement['player_names'],
'position': map_dict['pos_map'][best_replacement['player_names']].split('/'),
'team': map_dict['team_map'][best_replacement['player_names']],
'salary': best_replacement['salary'],
'median': best_replacement['median'],
'ownership': best_replacement['ownership']
}
# Return optimized lineup maintaining original column order
return [roster[pos]['name'] for pos in row.index if pos in roster]
def optimize_lineup_winners(row):
current_lineup = []
total_salary = 0
if curr_site_var == 'DraftKings':
salary_cap = 50000
else:
salary_cap = 60000
used_players = set()
# Check if any winners are in the lineup and count them
winners_in_lineup = sum(1 for player in row if player in winners_var)
changes_needed = min(winners_in_lineup, 3) if winners_in_lineup > 0 else 0
changes_made = 0
# Convert row to dictionary with roster positions
roster = {}
for col, player in zip(row.index, row):
if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']:
roster[col] = {
'name': player,
'position': map_dict['pos_map'].get(player, '').split('/'),
'team': map_dict['team_map'].get(player, ''),
'salary': map_dict['salary_map'].get(player, 0),
'median': map_dict['proj_map'].get(player, 0),
'ownership': map_dict['own_map'].get(player, 0)
}
total_salary += roster[col]['salary']
used_players.add(player)
# Only proceed with ownership-based optimization if we have winners in the lineup
if changes_needed > 0:
# Randomize the order of positions to optimize
roster_positions = list(roster.items())
random.shuffle(roster_positions)
for roster_pos, current in roster_positions:
# Stop if we've made enough changes
if changes_made >= changes_needed:
break
# Skip optimization for players from removed teams or if the current player is a winner
if current['team'] in remove_teams_var or current['name'] in winners_var:
continue
valid_positions = list(position_rules[roster_pos])
random.shuffle(valid_positions)
better_options = []
# Find valid replacements with higher ownership
for pos in valid_positions:
if pos in position_groups:
pos_options = [
p for p in position_groups[pos]
if p['ownership'] > current['ownership']
and p['median'] >= current['median'] - 3
and (total_salary - current['salary'] + p['salary']) <= salary_cap
and (total_salary - current['salary'] + p['salary']) >= salary_cap - 1000
and p['player_names'] not in used_players
and any(valid_pos in p['positions'] for valid_pos in valid_positions)
and map_dict['team_map'].get(p['player_names']) not in remove_teams_var
]
better_options.extend(pos_options)
if better_options:
# Remove duplicates
better_options = {opt['player_names']: opt for opt in better_options}.values()
# Sort by ownership and take the highest owned option
best_replacement = max(better_options, key=lambda x: x['ownership'])
# Update the lineup and tracking variables
used_players.remove(current['name'])
used_players.add(best_replacement['player_names'])
total_salary = total_salary - current['salary'] + best_replacement['salary']
roster[roster_pos] = {
'name': best_replacement['player_names'],
'position': map_dict['pos_map'][best_replacement['player_names']].split('/'),
'team': map_dict['team_map'][best_replacement['player_names']],
'salary': best_replacement['salary'],
'median': best_replacement['median'],
'ownership': best_replacement['ownership']
}
changes_made += 1
# Return optimized lineup maintaining original column order
return [roster[pos]['name'] for pos in row.index if pos in roster]
def optimize_lineup_losers(row):
current_lineup = []
total_salary = 0
if curr_site_var == 'DraftKings':
salary_cap = 50000
else:
salary_cap = 60000
used_players = set()
# Check if any winners are in the lineup and count them
losers_in_lineup = sum(1 for player in row if player in losers_var)
changes_needed = min(losers_in_lineup, 3) if losers_in_lineup > 0 else 0
changes_made = 0
# Convert row to dictionary with roster positions
roster = {}
for col, player in zip(row.index, row):
if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']:
roster[col] = {
'name': player,
'position': map_dict['pos_map'].get(player, '').split('/'),
'team': map_dict['team_map'].get(player, ''),
'salary': map_dict['salary_map'].get(player, 0),
'median': map_dict['proj_map'].get(player, 0),
'ownership': map_dict['own_map'].get(player, 0)
}
total_salary += roster[col]['salary']
used_players.add(player)
# Only proceed with ownership-based optimization if we have winners in the lineup
if changes_needed > 0:
# Randomize the order of positions to optimize
roster_positions = list(roster.items())
random.shuffle(roster_positions)
for roster_pos, current in roster_positions:
# Stop if we've made enough changes
if changes_made >= changes_needed:
break
# Skip optimization for players from removed teams or if the current player is a winner
if current['team'] in remove_teams_var or current['name'] in losers_var:
continue
valid_positions = list(position_rules[roster_pos])
random.shuffle(valid_positions)
better_options = []
# Find valid replacements with higher ownership
for pos in valid_positions:
if pos in position_groups:
pos_options = [
p for p in position_groups[pos]
if p['ownership'] < current['ownership']
and p['median'] >= current['median'] - 3
and (total_salary - current['salary'] + p['salary']) <= salary_cap
and (total_salary - current['salary'] + p['salary']) >= salary_cap - 1000
and p['player_names'] not in used_players
and any(valid_pos in p['positions'] for valid_pos in valid_positions)
and map_dict['team_map'].get(p['player_names']) not in remove_teams_var
]
better_options.extend(pos_options)
if better_options:
# Remove duplicates
better_options = {opt['player_names']: opt for opt in better_options}.values()
# Sort by ownership and take the highest owned option
best_replacement = max(better_options, key=lambda x: x['ownership'])
# Update the lineup and tracking variables
used_players.remove(current['name'])
used_players.add(best_replacement['player_names'])
total_salary = total_salary - current['salary'] + best_replacement['salary']
roster[roster_pos] = {
'name': best_replacement['player_names'],
'position': map_dict['pos_map'][best_replacement['player_names']].split('/'),
'team': map_dict['team_map'][best_replacement['player_names']],
'salary': best_replacement['salary'],
'median': best_replacement['median'],
'ownership': best_replacement['ownership']
}
changes_made += 1
# Return optimized lineup maintaining original column order
return [roster[pos]['name'] for pos in row.index if pos in roster]
# Create a progress bar
progress_bar = st.progress(0)
status_text = st.empty()
# Process each lineup
optimized_lineups = []
total_lineups = len(st.session_state['portfolio'])
for idx, row in st.session_state['portfolio'].iterrows():
# First optimization pass
first_pass = optimize_lineup(row)
first_pass_series = pd.Series(first_pass, index=row.index)
second_pass = optimize_lineup(first_pass_series)
second_pass_series = pd.Series(second_pass, index=row.index)
third_pass = optimize_lineup(second_pass_series)
third_pass_series = pd.Series(third_pass, index=row.index)
fourth_pass = optimize_lineup(third_pass_series)
fourth_pass_series = pd.Series(fourth_pass, index=row.index)
fifth_pass = optimize_lineup(fourth_pass_series)
fifth_pass_series = pd.Series(fifth_pass, index=row.index)
# Second optimization pass
final_lineup = optimize_lineup(fifth_pass_series)
optimized_lineups.append(final_lineup)
if 'Optimize' in swap_var:
progress = (idx + 1) / total_lineups
progress_bar.progress(progress)
status_text.text(f'Optimizing Lineups {idx + 1} of {total_lineups}')
else:
pass
# Create new dataframe with optimized lineups
if 'Optimize' in swap_var:
st.session_state['optimized_df_medians'] = pd.DataFrame(optimized_lineups, columns=st.session_state['portfolio'].columns)
else:
st.session_state['optimized_df_medians'] = st.session_state['portfolio']
# Create a progress bar
progress_bar_winners = st.progress(0)
status_text_winners = st.empty()
# Process each lineup
optimized_lineups_winners = []
total_lineups = len(st.session_state['optimized_df_medians'])
for idx, row in st.session_state['optimized_df_medians'].iterrows():
final_lineup = optimize_lineup_winners(row)
optimized_lineups_winners.append(final_lineup)
if 'Decrease volatility' in swap_var:
progress_winners = (idx + 1) / total_lineups
progress_bar_winners.progress(progress_winners)
status_text_winners.text(f'Lowering Volatility around Winners {idx + 1} of {total_lineups}')
else:
pass
# Create new dataframe with optimized lineups
if 'Decrease volatility' in swap_var:
st.session_state['optimized_df_winners'] = pd.DataFrame(optimized_lineups_winners, columns=st.session_state['optimized_df_medians'].columns)
else:
st.session_state['optimized_df_winners'] = st.session_state['optimized_df_medians']
# Create a progress bar
progress_bar_losers = st.progress(0)
status_text_losers = st.empty()
# Process each lineup
optimized_lineups_losers = []
total_lineups = len(st.session_state['optimized_df_winners'])
for idx, row in st.session_state['optimized_df_winners'].iterrows():
final_lineup = optimize_lineup_losers(row)
optimized_lineups_losers.append(final_lineup)
if 'Increase volatility' in swap_var:
progress_losers = (idx + 1) / total_lineups
progress_bar_losers.progress(progress_losers)
status_text_losers.text(f'Increasing Volatility around Losers {idx + 1} of {total_lineups}')
else:
pass
# Create new dataframe with optimized lineups
if 'Increase volatility' in swap_var:
st.session_state['optimized_df'] = pd.DataFrame(optimized_lineups_losers, columns=st.session_state['optimized_df_winners'].columns)
else:
st.session_state['optimized_df'] = st.session_state['optimized_df_winners']
# Calculate new stats for optimized lineups
st.session_state['optimized_df']['salary'] = st.session_state['optimized_df'].apply(
lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1
)
st.session_state['optimized_df']['median'] = st.session_state['optimized_df'].apply(
lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1
)
st.session_state['optimized_df']['Own'] = st.session_state['optimized_df'].apply(
lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1
)
# Display results
st.success('Optimization complete!')
if 'optimized_df' in st.session_state:
st.write("Increase in median highlighted in yellow, descrease in volatility highlighted in blue, increase in volatility highlighted in red:")
st.dataframe(
st.session_state['optimized_df'].style
.apply(highlight_changes, axis=1)
.apply(highlight_changes_winners, axis=1)
.apply(highlight_changes_losers, axis=1)
.background_gradient(axis=0)
.background_gradient(cmap='RdYlGn')
.format(precision=2),
height=1000,
use_container_width=True
)
# Option to download optimized lineups
if st.button('Prepare Late Swap Export'):
export_df = st.session_state['optimized_df'].copy()
# Map player names to their export IDs for all player columns
for col in export_df.columns:
if col not in ['salary', 'median', 'Own']:
export_df[col] = export_df[col].map(st.session_state['export_dict'])
csv = export_df.to_csv(index=False)
st.download_button(
label="Download CSV",
data=csv,
file_name="optimized_lineups.csv",
mime="text/csv"
)
else:
st.write("Current Portfolio")
st.dataframe(
st.session_state['portfolio'].style
.background_gradient(axis=0)
.background_gradient(cmap='RdYlGn')
.format(precision=2),
height=1000,
use_container_width=True
)
with tab3:
if st.button('Clear data', key='reset3'):
st.session_state.clear()
if 'portfolio' in st.session_state and 'projections_df' in st.session_state:
col1, col2, col3 = st.columns([1, 8, 1])
excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Win%', 'Lineup Edge']
with col1:
site_var = st.selectbox("Select Site", ['Draftkings', 'Fanduel'])
sport_var = st.selectbox("Select Sport", ['NFL', 'MLB', 'NBA', 'NHL', 'MMA'])
st.info("It currently does not matter what sport you select, it may matter in the future.")
type_var = st.selectbox("Select Game Type", ['Classic', 'Showdown'])
Contest_Size = st.number_input("Enter Contest Size", value=25000, min_value=1, step=1)
strength_var = st.selectbox("Select field strength", ['Average', 'Sharp', 'Weak'])
if site_var == 'Draftkings':
if type_var == 'Classic':
map_dict = {
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
}
elif type_var == 'Showdown':
if sport_var == 'NFL':
map_dict = {
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'] * 1.5)),
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
}
elif sport_var != 'NFL':
map_dict = {
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'] / 1.5)),
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
}
elif site_var == 'Fanduel':
map_dict = {
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
}
if type_var == 'Classic':
st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1)
st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row), axis=1)
st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(lambda row: sum(map_dict['own_map'].get(player, 0) for player in row), axis=1)
if stack_dict is not None:
st.session_state['portfolio']['Stack'] = st.session_state['portfolio'].index.map(stack_dict)
elif type_var == 'Showdown':
# Calculate salary (CPT uses cpt_salary_map, others use salary_map)
st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(
lambda row: map_dict['cpt_salary_map'].get(row.iloc[0], 0) +
sum(map_dict['salary_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate median (CPT uses cpt_proj_map, others use proj_map)
st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(
lambda row: map_dict['cpt_proj_map'].get(row.iloc[0], 0) +
sum(map_dict['proj_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate ownership (CPT uses cpt_own_map, others use own_map)
st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(
lambda row: map_dict['cpt_own_map'].get(row.iloc[0], 0) +
sum(map_dict['own_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
with col3:
with st.form(key='filter_form'):
max_dupes = st.number_input("Max acceptable dupes?", value=1000, min_value=1, step=1)
min_salary = st.number_input("Min acceptable salary?", value=1000, min_value=1000, step=100)
max_salary = st.number_input("Max acceptable salary?", value=60000, min_value=1000, step=100)
max_finish_percentile = st.number_input("Max acceptable finish percentile?", value=.50, min_value=0.005, step=.001)
player_names = set()
for col in st.session_state['portfolio'].columns:
if col not in excluded_cols:
player_names.update(st.session_state['portfolio'][col].unique())
player_lock = st.multiselect("Lock players?", options=sorted(list(player_names)), default=[])
player_remove = st.multiselect("Remove players?", options=sorted(list(player_names)), default=[])
if stack_dict is not None:
stack_toggle = st.selectbox("Include specific stacks?", options=['All Stacks', 'Specific Stacks'], index=0)
stack_selections = st.multiselect("If Specific Stacks, Which to include?", options=sorted(list(set(stack_dict.values()))), default=[])
stack_remove = st.multiselect("If Specific Stacks, Which to remove?", options=sorted(list(set(stack_dict.values()))), default=[])
submitted = st.form_submit_button("Submit")
with col2:
st.session_state['portfolio'] = predict_dupes(st.session_state['portfolio'], map_dict, site_var, type_var, Contest_Size, strength_var)
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Dupes'] <= max_dupes]
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['salary'] >= min_salary]
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['salary'] <= max_salary]
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Finish_percentile'] <= max_finish_percentile]
if stack_dict is not None:
if stack_toggle == 'All Stacks':
st.session_state['portfolio'] = st.session_state['portfolio']
st.session_state['portfolio'] = st.session_state['portfolio'][~st.session_state['portfolio']['Stack'].isin(stack_remove)]
else:
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Stack'].isin(stack_selections)]
st.session_state['portfolio'] = st.session_state['portfolio'][~st.session_state['portfolio']['Stack'].isin(stack_remove)]
if player_remove:
# Create mask for lineups that contain any of the removed players
player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols]
remove_mask = st.session_state['portfolio'][player_columns].apply(
lambda row: not any(player in list(row) for player in player_remove), axis=1
)
st.session_state['portfolio'] = st.session_state['portfolio'][remove_mask]
if player_lock:
# Create mask for lineups that contain all locked players
player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols]
lock_mask = st.session_state['portfolio'][player_columns].apply(
lambda row: all(player in list(row) for player in player_lock), axis=1
)
st.session_state['portfolio'] = st.session_state['portfolio'][lock_mask]
export_file = st.session_state['portfolio'].copy()
st.session_state['portfolio'] = st.session_state['portfolio'].sort_values(by='median', ascending=False)
if csv_file is not None:
player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols]
for col in player_columns:
export_file[col] = export_file[col].map(st.session_state['export_dict'])
with st.expander("Download options"):
if stack_dict is not None:
with st.form(key='stack_form'):
st.subheader("Stack Count Adjustments")
st.info("This allows you to fine tune the stacks that you wish to export. If you want to make sure you don't export any of a specific stack you can 0 it out.")
# Create a container for stack value inputs
sort_container = st.container()
with sort_container:
sort_var = st.selectbox("Sort export portfolio by:", options=['median', 'Lineup Edge', 'Own'])
# Get unique stack values
unique_stacks = sorted(list(set(stack_dict.values())))
# Create a dictionary to store stack multipliers
if 'stack_multipliers' not in st.session_state:
st.session_state.stack_multipliers = {stack: 0.0 for stack in unique_stacks}
# Create columns for the stack inputs
num_cols = 6 # Number of columns to display
for i in range(0, len(unique_stacks), num_cols):
cols = st.columns(num_cols)
for j, stack in enumerate(unique_stacks[i:i+num_cols]):
with cols[j]:
# Create a unique key for each number input
key = f"stack_count_{stack}"
# Get the current count of this stack in the portfolio
current_stack_count = len(st.session_state['portfolio'][st.session_state['portfolio']['Stack'] == stack])
# Create number input with current value and max value based on actual count
st.session_state.stack_multipliers[stack] = st.number_input(
f"{stack} count",
min_value=0.0,
max_value=float(current_stack_count),
value=0.0,
step=1.0,
key=key
)
# Create a copy of the portfolio
portfolio_copy = st.session_state['portfolio'].copy()
# Create a list to store selected rows
selected_rows = []
# For each stack, select the top N rows based on the count value
for stack in unique_stacks:
if stack in st.session_state.stack_multipliers:
count = int(st.session_state.stack_multipliers[stack])
# Get rows for this stack
stack_rows = portfolio_copy[portfolio_copy['Stack'] == stack]
# Sort by median and take top N rows
top_rows = stack_rows.nlargest(count, sort_var)
selected_rows.append(top_rows)
# Combine all selected rows
portfolio_copy = pd.concat(selected_rows)
# Update export_file with filtered data
export_file = portfolio_copy.copy()
for col in export_file.columns:
if col not in excluded_cols:
export_file[col] = export_file[col].map(st.session_state['export_dict'])
submitted = st.form_submit_button("Submit")
if submitted:
st.write('Export portfolio updated!')
st.download_button(label="Download Portfolio", data=export_file.to_csv(index=False), file_name="portfolio.csv", mime="text/csv")
# Display the paginated dataframe first
st.dataframe(
st.session_state['portfolio'].style
.background_gradient(axis=0)
.background_gradient(cmap='RdYlGn')
.background_gradient(cmap='RdYlGn_r', subset=['Finish_percentile', 'Own', 'Dupes'])
.format(freq_format, precision=2),
height=1000,
use_container_width=True
)
# Add pagination controls below the dataframe
total_rows = len(st.session_state['portfolio'])
rows_per_page = 500
total_pages = (total_rows + rows_per_page - 1) // rows_per_page # Ceiling division
# Initialize page number in session state if not exists
if 'current_page' not in st.session_state:
st.session_state.current_page = 1
# Display current page range info and pagination control in a single line
st.write(
f"Showing rows {(st.session_state.current_page - 1) * rows_per_page + 1} "
f"to {min(st.session_state.current_page * rows_per_page, total_rows)} of {total_rows}"
)
# Add page number input
st.session_state.current_page = st.number_input(
f"Page (1-{total_pages})",
min_value=1,
max_value=total_pages,
value=st.session_state.current_page
)
# Calculate start and end indices for current page
start_idx = (st.session_state.current_page - 1) * rows_per_page
end_idx = min(start_idx + rows_per_page, total_rows)
# Get the subset of data for the current page
current_page_data = st.session_state['portfolio'].iloc[start_idx:end_idx]
# Create player summary dataframe
player_stats = []
player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols]
if type_var == 'Showdown':
# Handle Captain positions
for player in player_names:
# Create mask for lineups where this player is Captain (first column)
cpt_mask = st.session_state['portfolio'][player_columns[0]] == player
if cpt_mask.any():
player_stats.append({
'Player': f"{player} (CPT)",
'Lineup Count': cpt_mask.sum(),
'Avg Median': st.session_state['portfolio'][cpt_mask]['median'].mean(),
'Avg Own': st.session_state['portfolio'][cpt_mask]['Own'].mean(),
'Avg Dupes': st.session_state['portfolio'][cpt_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['portfolio'][cpt_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['portfolio'][cpt_mask]['Lineup Edge'].mean(),
})
# Create mask for lineups where this player is FLEX (other columns)
flex_mask = st.session_state['portfolio'][player_columns[1:]].apply(
lambda row: player in list(row), axis=1
)
if flex_mask.any():
player_stats.append({
'Player': f"{player} (FLEX)",
'Lineup Count': flex_mask.sum(),
'Avg Median': st.session_state['portfolio'][flex_mask]['median'].mean(),
'Avg Own': st.session_state['portfolio'][flex_mask]['Own'].mean(),
'Avg Dupes': st.session_state['portfolio'][flex_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['portfolio'][flex_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['portfolio'][flex_mask]['Lineup Edge'].mean(),
})
else:
# Original Classic format processing
for player in player_names:
player_mask = st.session_state['portfolio'][player_columns].apply(
lambda row: player in list(row), axis=1
)
if player_mask.any():
player_stats.append({
'Player': player,
'Lineup Count': player_mask.sum(),
'Avg Median': st.session_state['portfolio'][player_mask]['median'].mean(),
'Avg Own': st.session_state['portfolio'][player_mask]['Own'].mean(),
'Avg Dupes': st.session_state['portfolio'][player_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['portfolio'][player_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['portfolio'][player_mask]['Lineup Edge'].mean(),
})
player_summary = pd.DataFrame(player_stats)
player_summary = player_summary.sort_values('Lineup Count', ascending=False)
st.subheader("Player Summary")
st.dataframe(
player_summary.style
.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Avg Finish %', 'Avg Own', 'Avg Dupes'])
.format({
'Avg Median': '{:.2f}',
'Avg Own': '{:.2f}',
'Avg Dupes': '{:.2f}',
'Avg Finish %': '{:.2%}',
'Avg Lineup Edge': '{:.2%}'
}),
height=400,
use_container_width=True
) |