|
import pandas as pd |
|
import numpy as np |
|
|
|
def volatility_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols: list): |
|
excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Diversity'] |
|
player_columns = [col for col in portfolio.columns if col not in excluded_cols] |
|
|
|
for slack_var in range(1, 20): |
|
concat_portfolio = pd.DataFrame(columns=portfolio.columns) |
|
|
|
for team in portfolio['Stack'].unique(): |
|
rows_to_drop = [] |
|
working_portfolio = portfolio.copy() |
|
working_portfolio = working_portfolio[working_portfolio['Stack'] == team].sort_values(by='Lineup Edge', ascending = False) |
|
working_portfolio = working_portfolio.reset_index(drop=True) |
|
curr_own_type_max = working_portfolio.loc[0, 'Diversity'] + (slack_var / 20 * working_portfolio.loc[0, 'Diversity']) |
|
|
|
for i in range(1, len(working_portfolio)): |
|
if working_portfolio.loc[i, 'Diversity'] < curr_own_type_max: |
|
rows_to_drop.append(i) |
|
else: |
|
curr_own_type_max = working_portfolio.loc[i, 'Diversity'] + (slack_var / 20 * working_portfolio.loc[i, 'Diversity']) |
|
|
|
working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True) |
|
concat_portfolio = pd.concat([concat_portfolio, working_portfolio]) |
|
|
|
if len(concat_portfolio) >= lineup_target: |
|
return concat_portfolio.sort_values(by='Lineup Edge', ascending=False).head(lineup_target) |
|
|
|
return concat_portfolio.sort_values(by='Lineup Edge', ascending=False) |
|
|