James McCool
Update app.py and trim_portfolio.py to change threshold parameters from integers to floats, enhancing precision in portfolio trimming functionality and ensuring consistent data handling.
232eb2a
import pandas as pd | |
def trim_portfolio(portfolio: pd.DataFrame, performance_type: str, own_type: str, performance_threshold_high: float, performance_threshold_low: float, own_threshold_high: float, own_threshold_low: float): | |
if performance_type == 'Finish_percentile': | |
working_portfolio = portfolio.sort_values(by=performance_type, ascending = True).reset_index(drop=True) | |
else: | |
working_portfolio = portfolio.sort_values(by=performance_type, ascending = False).reset_index(drop=True) | |
rows_to_drop = [] | |
curr_own_type_max = working_portfolio.loc[0, own_type] | |
for i in range(1, len(working_portfolio)): | |
if working_portfolio.loc[i, own_type] > curr_own_type_max and \ | |
working_portfolio.loc[i, performance_type] > performance_threshold_low and \ | |
working_portfolio.loc[i, performance_type] <= performance_threshold_high and \ | |
working_portfolio.loc[i, own_type] > own_threshold_low and \ | |
working_portfolio.loc[i, own_type] <= own_threshold_high: | |
rows_to_drop.append(i) | |
else: | |
curr_own_type_max = working_portfolio.loc[i, own_type] | |
working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True) | |
return working_portfolio |