James McCool
Enhance export options in app.py: introduce a selection for 'Simple' or 'Advanced' download types, allowing users to choose between direct portfolio export or customized stack adjustments, improving flexibility and user experience during data export.
7a401f2
import streamlit as st | |
st.set_page_config(layout="wide") | |
import numpy as np | |
import pandas as pd | |
import time | |
from fuzzywuzzy import process | |
import random | |
## import global functions | |
from global_func.clean_player_name import clean_player_name | |
from global_func.load_file import load_file | |
from global_func.load_ss_file import load_ss_file | |
from global_func.find_name_mismatches import find_name_mismatches | |
from global_func.predict_dupes import predict_dupes | |
from global_func.highlight_rows import highlight_changes, highlight_changes_winners, highlight_changes_losers | |
from global_func.load_csv import load_csv | |
from global_func.find_csv_mismatches import find_csv_mismatches | |
from global_func.trim_portfolio import trim_portfolio | |
freq_format = {'Finish_percentile': '{:.2%}', 'Lineup Edge': '{:.2%}', 'Win%': '{:.2%}'} | |
player_wrong_names_mlb = ['Enrique Hernandez'] | |
player_right_names_mlb = ['Kike Hernandez'] | |
tab1, tab2, tab3 = st.tabs(["Data Load", "Late Swap", "Manage Portfolio"]) | |
with tab1: | |
if st.button('Clear data', key='reset1'): | |
st.session_state.clear() | |
# Add file uploaders to your app | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
st.subheader("Draftkings/Fanduel CSV") | |
st.info("Upload the player pricing CSV from the site you are playing on. This is used in late swap exporting and/or with SaberSim portfolios, but is not necessary for the portfolio management functions.") | |
upload_csv_col, csv_template_col = st.columns([3, 1]) | |
with upload_csv_col: | |
csv_file = st.file_uploader("Upload CSV File", type=['csv']) | |
if 'csv_file' in st.session_state: | |
del st.session_state['csv_file'] | |
with csv_template_col: | |
csv_template_df = pd.DataFrame(columns=['Name', 'ID', 'Roster Position', 'Salary']) | |
st.download_button( | |
label="CSV Template", | |
data=csv_template_df.to_csv(index=False), | |
file_name="csv_template.csv", | |
mime="text/csv" | |
) | |
st.session_state['csv_file'] = load_csv(csv_file) | |
try: | |
st.session_state['csv_file']['Salary'] = st.session_state['csv_file']['Salary'].astype(str).str.replace(',', '').astype(int) | |
except: | |
pass | |
if csv_file: | |
st.session_state['csv_file'] = st.session_state['csv_file'].drop_duplicates(subset=['Name']) | |
st.success('Projections file loaded successfully!') | |
st.dataframe(st.session_state['csv_file'].head(10)) | |
with col2: | |
st.subheader("Portfolio File") | |
st.info("Go ahead and upload a portfolio file here. Only include player columns and an optional 'Stack' column if you are playing MLB.") | |
saber_toggle = st.radio("Are you uploading from SaberSim?", options=['No', 'Yes']) | |
st.info("If you are uploading from SaberSim, you will need to upload a CSV file for the slate for name matching.") | |
if saber_toggle == 'Yes': | |
if csv_file is not None: | |
portfolio_file = st.file_uploader("Upload Portfolio File (CSV or Excel)", type=['csv', 'xlsx', 'xls']) | |
if 'portfolio' in st.session_state: | |
del st.session_state['portfolio'] | |
if 'export_portfolio' in st.session_state: | |
del st.session_state['export_portfolio'] | |
else: | |
portfolio_file = st.file_uploader("Upload Portfolio File (CSV or Excel)", type=['csv', 'xlsx', 'xls']) | |
if 'portfolio' in st.session_state: | |
del st.session_state['portfolio'] | |
if 'export_portfolio' in st.session_state: | |
del st.session_state['export_portfolio'] | |
if 'portfolio' not in st.session_state: | |
if portfolio_file: | |
if saber_toggle == 'Yes': | |
st.session_state['export_portfolio'], st.session_state['portfolio'] = load_ss_file(portfolio_file, st.session_state['csv_file']) | |
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all') | |
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True) | |
st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all') | |
st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True) | |
else: | |
st.session_state['export_portfolio'], st.session_state['portfolio'] = load_file(portfolio_file) | |
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all') | |
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True) | |
st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all') | |
st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True) | |
# Check if Stack column exists in the portfolio | |
if 'Stack' in st.session_state['portfolio'].columns: | |
# Create dictionary mapping index to Stack values | |
stack_dict = dict(zip(st.session_state['portfolio'].index, st.session_state['portfolio']['Stack'])) | |
st.write(f"Found {len(stack_dict)} stack assignments") | |
st.session_state['portfolio'] = st.session_state['portfolio'].drop(columns=['Stack']) | |
else: | |
stack_dict = None | |
st.info("No Stack column found in portfolio") | |
if st.session_state['portfolio'] is not None: | |
st.success('Portfolio file loaded successfully!') | |
st.session_state['portfolio'] = st.session_state['portfolio'].apply(lambda x: x.replace(player_wrong_names_mlb, player_right_names_mlb)) | |
st.dataframe(st.session_state['portfolio'].head(10)) | |
with col3: | |
st.subheader("Projections File") | |
st.info("upload a projections file that has 'player_names', 'salary', 'median', 'ownership', and 'captain ownership' (Needed for Showdown) columns. Note that the salary for showdown needs to be the FLEX salary, not the captain salary.") | |
# Create two columns for the uploader and template button | |
upload_col, template_col = st.columns([3, 1]) | |
with upload_col: | |
projections_file = st.file_uploader("Upload Projections File (CSV or Excel)", type=['csv', 'xlsx', 'xls']) | |
if 'projections_df' in st.session_state: | |
del st.session_state['projections_df'] | |
with template_col: | |
# Create empty DataFrame with required columns | |
template_df = pd.DataFrame(columns=['player_names', 'position', 'team', 'salary', 'median', 'ownership', 'captain ownership']) | |
# Add download button for template | |
st.download_button( | |
label="Template", | |
data=template_df.to_csv(index=False), | |
file_name="projections_template.csv", | |
mime="text/csv" | |
) | |
if projections_file: | |
export_projections, projections = load_file(projections_file) | |
if projections is not None: | |
st.success('Projections file loaded successfully!') | |
projections = projections.apply(lambda x: x.replace(player_wrong_names_mlb, player_right_names_mlb)) | |
st.dataframe(projections.head(10)) | |
if portfolio_file and projections_file: | |
if st.session_state['portfolio'] is not None and projections is not None: | |
st.subheader("Name Matching Analysis") | |
# Initialize projections_df in session state if it doesn't exist | |
if 'projections_df' not in st.session_state: | |
st.session_state['projections_df'] = projections.copy() | |
st.session_state['projections_df']['salary'] = (st.session_state['projections_df']['salary'].astype(str).str.replace(',', '').astype(float).astype(int)) | |
# Update projections_df with any new matches | |
st.session_state['projections_df'] = find_name_mismatches(st.session_state['portfolio'], st.session_state['projections_df']) | |
if csv_file is not None and 'export_dict' not in st.session_state: | |
# Create a dictionary of Name to Name+ID from csv_file | |
try: | |
name_id_map = dict(zip( | |
st.session_state['csv_file']['Name'], | |
st.session_state['csv_file']['Name + ID'] | |
)) | |
except: | |
name_id_map = dict(zip( | |
st.session_state['csv_file']['Nickname'], | |
st.session_state['csv_file']['Id'] | |
)) | |
# Function to find best match | |
def find_best_match(name): | |
best_match = process.extractOne(name, name_id_map.keys()) | |
if best_match and best_match[1] >= 85: # 85% match threshold | |
return name_id_map[best_match[0]] | |
return name # Return original name if no good match found | |
# Apply the matching | |
projections['upload_match'] = projections['player_names'].apply(find_best_match) | |
st.session_state['export_dict'] = dict(zip(projections['player_names'], projections['upload_match'])) | |
st.session_state['origin_portfolio'] = st.session_state['portfolio'].copy() | |
with tab2: | |
if st.button('Clear data', key='reset2'): | |
st.session_state.clear() | |
if 'portfolio' in st.session_state and 'projections_df' in st.session_state: | |
optimized_df = None | |
map_dict = { | |
'pos_map': dict(zip(st.session_state['projections_df']['player_names'], | |
st.session_state['projections_df']['position'])), | |
'salary_map': dict(zip(st.session_state['projections_df']['player_names'], | |
st.session_state['projections_df']['salary'])), | |
'proj_map': dict(zip(st.session_state['projections_df']['player_names'], | |
st.session_state['projections_df']['median'])), | |
'own_map': dict(zip(st.session_state['projections_df']['player_names'], | |
st.session_state['projections_df']['ownership'])), | |
'team_map': dict(zip(st.session_state['projections_df']['player_names'], | |
st.session_state['projections_df']['team'])) | |
} | |
# Calculate new stats for optimized lineups | |
st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply( | |
lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1 | |
) | |
st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply( | |
lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1 | |
) | |
st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply( | |
lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1 | |
) | |
options_container = st.container() | |
with options_container: | |
col1, col2, col3, col4, col5, col6 = st.columns(6) | |
with col1: | |
curr_site_var = st.selectbox("Select your current site", options=['DraftKings', 'FanDuel']) | |
with col2: | |
curr_sport_var = st.selectbox("Select your current sport", options=['NBA', 'MLB', 'NFL', 'NHL', 'MMA']) | |
with col3: | |
swap_var = st.multiselect("Select late swap strategy", options=['Optimize', 'Increase volatility', 'Decrease volatility']) | |
with col4: | |
remove_teams_var = st.multiselect("What teams have already played?", options=st.session_state['projections_df']['team'].unique()) | |
with col5: | |
winners_var = st.multiselect("Are there any players doing exceptionally well?", options=st.session_state['projections_df']['player_names'].unique(), max_selections=3) | |
with col6: | |
losers_var = st.multiselect("Are there any players doing exceptionally poorly?", options=st.session_state['projections_df']['player_names'].unique(), max_selections=3) | |
if st.button('Clear Late Swap'): | |
if 'optimized_df' in st.session_state: | |
del st.session_state['optimized_df'] | |
map_dict = { | |
'pos_map': dict(zip(st.session_state['projections_df']['player_names'], | |
st.session_state['projections_df']['position'])), | |
'salary_map': dict(zip(st.session_state['projections_df']['player_names'], | |
st.session_state['projections_df']['salary'])), | |
'proj_map': dict(zip(st.session_state['projections_df']['player_names'], | |
st.session_state['projections_df']['median'])), | |
'own_map': dict(zip(st.session_state['projections_df']['player_names'], | |
st.session_state['projections_df']['ownership'])), | |
'team_map': dict(zip(st.session_state['projections_df']['player_names'], | |
st.session_state['projections_df']['team'])) | |
} | |
# Calculate new stats for optimized lineups | |
st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply( | |
lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1 | |
) | |
st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply( | |
lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1 | |
) | |
st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply( | |
lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1 | |
) | |
if st.button('Run Late Swap'): | |
st.session_state['portfolio'] = st.session_state['portfolio'].drop(columns=['salary', 'median', 'Own']) | |
if curr_sport_var == 'NBA': | |
if curr_site_var == 'DraftKings': | |
st.session_state['portfolio'] = st.session_state['portfolio'].set_axis(['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL'], axis=1) | |
else: | |
st.session_state['portfolio'] = st.session_state['portfolio'].set_axis(['PG', 'PG', 'SG', 'SG', 'SF', 'SF', 'PF', 'PF', 'C'], axis=1) | |
# Define roster position rules | |
if curr_site_var == 'DraftKings': | |
position_rules = { | |
'PG': ['PG'], | |
'SG': ['SG'], | |
'SF': ['SF'], | |
'PF': ['PF'], | |
'C': ['C'], | |
'G': ['PG', 'SG'], | |
'F': ['SF', 'PF'], | |
'UTIL': ['PG', 'SG', 'SF', 'PF', 'C'] | |
} | |
else: | |
position_rules = { | |
'PG': ['PG'], | |
'SG': ['SG'], | |
'SF': ['SF'], | |
'PF': ['PF'], | |
'C': ['C'], | |
} | |
# Create position groups from projections data | |
position_groups = {} | |
for _, player in st.session_state['projections_df'].iterrows(): | |
positions = player['position'].split('/') | |
for pos in positions: | |
if pos not in position_groups: | |
position_groups[pos] = [] | |
position_groups[pos].append({ | |
'player_names': player['player_names'], | |
'salary': player['salary'], | |
'median': player['median'], | |
'ownership': player['ownership'], | |
'positions': positions # Store all eligible positions | |
}) | |
def optimize_lineup(row): | |
current_lineup = [] | |
total_salary = 0 | |
if curr_site_var == 'DraftKings': | |
salary_cap = 50000 | |
else: | |
salary_cap = 60000 | |
used_players = set() | |
# Convert row to dictionary with roster positions | |
roster = {} | |
for col, player in zip(row.index, row): | |
if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']: | |
roster[col] = { | |
'name': player, | |
'position': map_dict['pos_map'].get(player, '').split('/'), | |
'team': map_dict['team_map'].get(player, ''), | |
'salary': map_dict['salary_map'].get(player, 0), | |
'median': map_dict['proj_map'].get(player, 0), | |
'ownership': map_dict['own_map'].get(player, 0) | |
} | |
total_salary += roster[col]['salary'] | |
used_players.add(player) | |
# Optimize each roster position in random order | |
roster_positions = list(roster.items()) | |
random.shuffle(roster_positions) | |
for roster_pos, current in roster_positions: | |
# Skip optimization for players from removed teams | |
if current['team'] in remove_teams_var: | |
continue | |
valid_positions = position_rules[roster_pos] | |
better_options = [] | |
# Find valid replacements for this roster position | |
for pos in valid_positions: | |
if pos in position_groups: | |
pos_options = [ | |
p for p in position_groups[pos] | |
if p['median'] > current['median'] | |
and (total_salary - current['salary'] + p['salary']) <= salary_cap | |
and p['player_names'] not in used_players | |
and any(valid_pos in p['positions'] for valid_pos in valid_positions) | |
and map_dict['team_map'].get(p['player_names']) not in remove_teams_var # Check team restriction | |
] | |
better_options.extend(pos_options) | |
if better_options: | |
# Remove duplicates | |
better_options = {opt['player_names']: opt for opt in better_options}.values() | |
# Sort by median projection and take the best one | |
best_replacement = max(better_options, key=lambda x: x['median']) | |
# Update the lineup and tracking variables | |
used_players.remove(current['name']) | |
used_players.add(best_replacement['player_names']) | |
total_salary = total_salary - current['salary'] + best_replacement['salary'] | |
roster[roster_pos] = { | |
'name': best_replacement['player_names'], | |
'position': map_dict['pos_map'][best_replacement['player_names']].split('/'), | |
'team': map_dict['team_map'][best_replacement['player_names']], | |
'salary': best_replacement['salary'], | |
'median': best_replacement['median'], | |
'ownership': best_replacement['ownership'] | |
} | |
# Return optimized lineup maintaining original column order | |
return [roster[pos]['name'] for pos in row.index if pos in roster] | |
def optimize_lineup_winners(row): | |
current_lineup = [] | |
total_salary = 0 | |
if curr_site_var == 'DraftKings': | |
salary_cap = 50000 | |
else: | |
salary_cap = 60000 | |
used_players = set() | |
# Check if any winners are in the lineup and count them | |
winners_in_lineup = sum(1 for player in row if player in winners_var) | |
changes_needed = min(winners_in_lineup, 3) if winners_in_lineup > 0 else 0 | |
changes_made = 0 | |
# Convert row to dictionary with roster positions | |
roster = {} | |
for col, player in zip(row.index, row): | |
if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']: | |
roster[col] = { | |
'name': player, | |
'position': map_dict['pos_map'].get(player, '').split('/'), | |
'team': map_dict['team_map'].get(player, ''), | |
'salary': map_dict['salary_map'].get(player, 0), | |
'median': map_dict['proj_map'].get(player, 0), | |
'ownership': map_dict['own_map'].get(player, 0) | |
} | |
total_salary += roster[col]['salary'] | |
used_players.add(player) | |
# Only proceed with ownership-based optimization if we have winners in the lineup | |
if changes_needed > 0: | |
# Randomize the order of positions to optimize | |
roster_positions = list(roster.items()) | |
random.shuffle(roster_positions) | |
for roster_pos, current in roster_positions: | |
# Stop if we've made enough changes | |
if changes_made >= changes_needed: | |
break | |
# Skip optimization for players from removed teams or if the current player is a winner | |
if current['team'] in remove_teams_var or current['name'] in winners_var: | |
continue | |
valid_positions = list(position_rules[roster_pos]) | |
random.shuffle(valid_positions) | |
better_options = [] | |
# Find valid replacements with higher ownership | |
for pos in valid_positions: | |
if pos in position_groups: | |
pos_options = [ | |
p for p in position_groups[pos] | |
if p['ownership'] > current['ownership'] | |
and p['median'] >= current['median'] - 3 | |
and (total_salary - current['salary'] + p['salary']) <= salary_cap | |
and (total_salary - current['salary'] + p['salary']) >= salary_cap - 1000 | |
and p['player_names'] not in used_players | |
and any(valid_pos in p['positions'] for valid_pos in valid_positions) | |
and map_dict['team_map'].get(p['player_names']) not in remove_teams_var | |
] | |
better_options.extend(pos_options) | |
if better_options: | |
# Remove duplicates | |
better_options = {opt['player_names']: opt for opt in better_options}.values() | |
# Sort by ownership and take the highest owned option | |
best_replacement = max(better_options, key=lambda x: x['ownership']) | |
# Update the lineup and tracking variables | |
used_players.remove(current['name']) | |
used_players.add(best_replacement['player_names']) | |
total_salary = total_salary - current['salary'] + best_replacement['salary'] | |
roster[roster_pos] = { | |
'name': best_replacement['player_names'], | |
'position': map_dict['pos_map'][best_replacement['player_names']].split('/'), | |
'team': map_dict['team_map'][best_replacement['player_names']], | |
'salary': best_replacement['salary'], | |
'median': best_replacement['median'], | |
'ownership': best_replacement['ownership'] | |
} | |
changes_made += 1 | |
# Return optimized lineup maintaining original column order | |
return [roster[pos]['name'] for pos in row.index if pos in roster] | |
def optimize_lineup_losers(row): | |
current_lineup = [] | |
total_salary = 0 | |
if curr_site_var == 'DraftKings': | |
salary_cap = 50000 | |
else: | |
salary_cap = 60000 | |
used_players = set() | |
# Check if any winners are in the lineup and count them | |
losers_in_lineup = sum(1 for player in row if player in losers_var) | |
changes_needed = min(losers_in_lineup, 3) if losers_in_lineup > 0 else 0 | |
changes_made = 0 | |
# Convert row to dictionary with roster positions | |
roster = {} | |
for col, player in zip(row.index, row): | |
if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']: | |
roster[col] = { | |
'name': player, | |
'position': map_dict['pos_map'].get(player, '').split('/'), | |
'team': map_dict['team_map'].get(player, ''), | |
'salary': map_dict['salary_map'].get(player, 0), | |
'median': map_dict['proj_map'].get(player, 0), | |
'ownership': map_dict['own_map'].get(player, 0) | |
} | |
total_salary += roster[col]['salary'] | |
used_players.add(player) | |
# Only proceed with ownership-based optimization if we have winners in the lineup | |
if changes_needed > 0: | |
# Randomize the order of positions to optimize | |
roster_positions = list(roster.items()) | |
random.shuffle(roster_positions) | |
for roster_pos, current in roster_positions: | |
# Stop if we've made enough changes | |
if changes_made >= changes_needed: | |
break | |
# Skip optimization for players from removed teams or if the current player is a winner | |
if current['team'] in remove_teams_var or current['name'] in losers_var: | |
continue | |
valid_positions = list(position_rules[roster_pos]) | |
random.shuffle(valid_positions) | |
better_options = [] | |
# Find valid replacements with higher ownership | |
for pos in valid_positions: | |
if pos in position_groups: | |
pos_options = [ | |
p for p in position_groups[pos] | |
if p['ownership'] < current['ownership'] | |
and p['median'] >= current['median'] - 3 | |
and (total_salary - current['salary'] + p['salary']) <= salary_cap | |
and (total_salary - current['salary'] + p['salary']) >= salary_cap - 1000 | |
and p['player_names'] not in used_players | |
and any(valid_pos in p['positions'] for valid_pos in valid_positions) | |
and map_dict['team_map'].get(p['player_names']) not in remove_teams_var | |
] | |
better_options.extend(pos_options) | |
if better_options: | |
# Remove duplicates | |
better_options = {opt['player_names']: opt for opt in better_options}.values() | |
# Sort by ownership and take the highest owned option | |
best_replacement = max(better_options, key=lambda x: x['ownership']) | |
# Update the lineup and tracking variables | |
used_players.remove(current['name']) | |
used_players.add(best_replacement['player_names']) | |
total_salary = total_salary - current['salary'] + best_replacement['salary'] | |
roster[roster_pos] = { | |
'name': best_replacement['player_names'], | |
'position': map_dict['pos_map'][best_replacement['player_names']].split('/'), | |
'team': map_dict['team_map'][best_replacement['player_names']], | |
'salary': best_replacement['salary'], | |
'median': best_replacement['median'], | |
'ownership': best_replacement['ownership'] | |
} | |
changes_made += 1 | |
# Return optimized lineup maintaining original column order | |
return [roster[pos]['name'] for pos in row.index if pos in roster] | |
# Create a progress bar | |
progress_bar = st.progress(0) | |
status_text = st.empty() | |
# Process each lineup | |
optimized_lineups = [] | |
total_lineups = len(st.session_state['portfolio']) | |
for idx, row in st.session_state['portfolio'].iterrows(): | |
# First optimization pass | |
first_pass = optimize_lineup(row) | |
first_pass_series = pd.Series(first_pass, index=row.index) | |
second_pass = optimize_lineup(first_pass_series) | |
second_pass_series = pd.Series(second_pass, index=row.index) | |
third_pass = optimize_lineup(second_pass_series) | |
third_pass_series = pd.Series(third_pass, index=row.index) | |
fourth_pass = optimize_lineup(third_pass_series) | |
fourth_pass_series = pd.Series(fourth_pass, index=row.index) | |
fifth_pass = optimize_lineup(fourth_pass_series) | |
fifth_pass_series = pd.Series(fifth_pass, index=row.index) | |
# Second optimization pass | |
final_lineup = optimize_lineup(fifth_pass_series) | |
optimized_lineups.append(final_lineup) | |
if 'Optimize' in swap_var: | |
progress = (idx + 1) / total_lineups | |
progress_bar.progress(progress) | |
status_text.text(f'Optimizing Lineups {idx + 1} of {total_lineups}') | |
else: | |
pass | |
# Create new dataframe with optimized lineups | |
if 'Optimize' in swap_var: | |
st.session_state['optimized_df_medians'] = pd.DataFrame(optimized_lineups, columns=st.session_state['portfolio'].columns) | |
else: | |
st.session_state['optimized_df_medians'] = st.session_state['portfolio'] | |
# Create a progress bar | |
progress_bar_winners = st.progress(0) | |
status_text_winners = st.empty() | |
# Process each lineup | |
optimized_lineups_winners = [] | |
total_lineups = len(st.session_state['optimized_df_medians']) | |
for idx, row in st.session_state['optimized_df_medians'].iterrows(): | |
final_lineup = optimize_lineup_winners(row) | |
optimized_lineups_winners.append(final_lineup) | |
if 'Decrease volatility' in swap_var: | |
progress_winners = (idx + 1) / total_lineups | |
progress_bar_winners.progress(progress_winners) | |
status_text_winners.text(f'Lowering Volatility around Winners {idx + 1} of {total_lineups}') | |
else: | |
pass | |
# Create new dataframe with optimized lineups | |
if 'Decrease volatility' in swap_var: | |
st.session_state['optimized_df_winners'] = pd.DataFrame(optimized_lineups_winners, columns=st.session_state['optimized_df_medians'].columns) | |
else: | |
st.session_state['optimized_df_winners'] = st.session_state['optimized_df_medians'] | |
# Create a progress bar | |
progress_bar_losers = st.progress(0) | |
status_text_losers = st.empty() | |
# Process each lineup | |
optimized_lineups_losers = [] | |
total_lineups = len(st.session_state['optimized_df_winners']) | |
for idx, row in st.session_state['optimized_df_winners'].iterrows(): | |
final_lineup = optimize_lineup_losers(row) | |
optimized_lineups_losers.append(final_lineup) | |
if 'Increase volatility' in swap_var: | |
progress_losers = (idx + 1) / total_lineups | |
progress_bar_losers.progress(progress_losers) | |
status_text_losers.text(f'Increasing Volatility around Losers {idx + 1} of {total_lineups}') | |
else: | |
pass | |
# Create new dataframe with optimized lineups | |
if 'Increase volatility' in swap_var: | |
st.session_state['optimized_df'] = pd.DataFrame(optimized_lineups_losers, columns=st.session_state['optimized_df_winners'].columns) | |
else: | |
st.session_state['optimized_df'] = st.session_state['optimized_df_winners'] | |
# Calculate new stats for optimized lineups | |
st.session_state['optimized_df']['salary'] = st.session_state['optimized_df'].apply( | |
lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1 | |
) | |
st.session_state['optimized_df']['median'] = st.session_state['optimized_df'].apply( | |
lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1 | |
) | |
st.session_state['optimized_df']['Own'] = st.session_state['optimized_df'].apply( | |
lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1 | |
) | |
# Display results | |
st.success('Optimization complete!') | |
if 'optimized_df' in st.session_state: | |
st.write("Increase in median highlighted in yellow, descrease in volatility highlighted in blue, increase in volatility highlighted in red:") | |
st.dataframe( | |
st.session_state['optimized_df'].style | |
.apply(highlight_changes, axis=1) | |
.apply(highlight_changes_winners, axis=1) | |
.apply(highlight_changes_losers, axis=1) | |
.background_gradient(axis=0) | |
.background_gradient(cmap='RdYlGn') | |
.format(precision=2), | |
height=1000, | |
use_container_width=True | |
) | |
# Option to download optimized lineups | |
if st.button('Prepare Late Swap Export'): | |
export_df = st.session_state['optimized_df'].copy() | |
# Map player names to their export IDs for all player columns | |
for col in export_df.columns: | |
if col not in ['salary', 'median', 'Own']: | |
export_df[col] = export_df[col].map(st.session_state['export_dict']) | |
csv = export_df.to_csv(index=False) | |
st.download_button( | |
label="Download CSV", | |
data=csv, | |
file_name="optimized_lineups.csv", | |
mime="text/csv" | |
) | |
else: | |
st.write("Current Portfolio") | |
st.dataframe( | |
st.session_state['portfolio'].style | |
.background_gradient(axis=0) | |
.background_gradient(cmap='RdYlGn') | |
.format(precision=2), | |
height=1000, | |
use_container_width=True | |
) | |
with tab3: | |
if 'portfolio' in st.session_state and 'projections_df' in st.session_state: | |
excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Win%', 'Lineup Edge'] | |
with st.container(): | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
site_var = st.selectbox("Select Site", ['Draftkings', 'Fanduel']) | |
if st.button('Reset Portfolio', key='reset_port'): | |
st.session_state['portfolio'] = st.session_state['origin_portfolio'].copy() | |
if st.button('Clear data', key='reset3'): | |
st.session_state.clear() | |
with col2: | |
sport_var = st.selectbox("Select Sport", ['NFL', 'MLB', 'NBA', 'NHL', 'MMA']) | |
type_var = st.selectbox("Select Game Type", ['Classic', 'Showdown']) | |
with col3: | |
Contest_Size = st.number_input("Enter Contest Size", value=25000, min_value=1, step=1) | |
strength_var = st.selectbox("Select field strength", ['Average', 'Sharp', 'Weak']) | |
if site_var == 'Draftkings': | |
if type_var == 'Classic': | |
map_dict = { | |
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])), | |
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])), | |
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])), | |
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])), | |
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])), | |
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))), | |
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])), | |
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)), | |
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership'])) | |
} | |
elif type_var == 'Showdown': | |
if sport_var == 'NFL': | |
map_dict = { | |
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])), | |
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])), | |
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])), | |
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])), | |
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])), | |
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))), | |
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'] * 1.5)), | |
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)), | |
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership'])) | |
} | |
elif sport_var != 'NFL': | |
map_dict = { | |
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])), | |
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])), | |
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'] / 1.5)), | |
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])), | |
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])), | |
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))), | |
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])), | |
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)), | |
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership'])) | |
} | |
elif site_var == 'Fanduel': | |
map_dict = { | |
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])), | |
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])), | |
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])), | |
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])), | |
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])), | |
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))), | |
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])), | |
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)), | |
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership'])) | |
} | |
if type_var == 'Classic': | |
st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1) | |
st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row), axis=1) | |
st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(lambda row: sum(map_dict['own_map'].get(player, 0) for player in row), axis=1) | |
if stack_dict is not None: | |
st.session_state['portfolio']['Stack'] = st.session_state['portfolio'].index.map(stack_dict) | |
elif type_var == 'Showdown': | |
# Calculate salary (CPT uses cpt_salary_map, others use salary_map) | |
st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply( | |
lambda row: map_dict['cpt_salary_map'].get(row.iloc[0], 0) + | |
sum(map_dict['salary_map'].get(player, 0) for player in row.iloc[1:]), | |
axis=1 | |
) | |
# Calculate median (CPT uses cpt_proj_map, others use proj_map) | |
st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply( | |
lambda row: map_dict['cpt_proj_map'].get(row.iloc[0], 0) + | |
sum(map_dict['proj_map'].get(player, 0) for player in row.iloc[1:]), | |
axis=1 | |
) | |
# Calculate ownership (CPT uses cpt_own_map, others use own_map) | |
st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply( | |
lambda row: map_dict['cpt_own_map'].get(row.iloc[0], 0) + | |
sum(map_dict['own_map'].get(player, 0) for player in row.iloc[1:]), | |
axis=1 | |
) | |
col1, col2 = st.columns([2, 8]) | |
with col1: | |
with st.expander('Filter Options'): | |
with st.form(key='filter_form'): | |
max_dupes = st.number_input("Max acceptable dupes?", value=1000, min_value=1, step=1) | |
min_salary = st.number_input("Min acceptable salary?", value=1000, min_value=1000, step=100) | |
max_salary = st.number_input("Max acceptable salary?", value=60000, min_value=1000, step=100) | |
max_finish_percentile = st.number_input("Max acceptable finish percentile?", value=.50, min_value=0.005, step=.001) | |
min_lineup_edge = st.number_input("Min acceptable Lineup Edge?", value=-.5, min_value=-1.00, step=.001) | |
player_names = set() | |
for col in st.session_state['portfolio'].columns: | |
if col not in excluded_cols: | |
player_names.update(st.session_state['portfolio'][col].unique()) | |
player_lock = st.multiselect("Lock players?", options=sorted(list(player_names)), default=[]) | |
player_remove = st.multiselect("Remove players?", options=sorted(list(player_names)), default=[]) | |
if stack_dict is not None: | |
stack_toggle = st.selectbox("Include specific stacks?", options=['All Stacks', 'Specific Stacks'], index=0) | |
stack_selections = st.multiselect("If Specific Stacks, Which to include?", options=sorted(list(set(stack_dict.values()))), default=[]) | |
stack_remove = st.multiselect("If Specific Stacks, Which to remove?", options=sorted(list(set(stack_dict.values()))), default=[]) | |
submitted = st.form_submit_button("Submit") | |
with st.expander('Trimming Options'): | |
st.info("Make sure you filter before trimming if you want to filter, trimming before a filter will reset your portfolio") | |
with st.form(key='trim_form'): | |
performance_type = st.selectbox("Select Sorting variable", ['median', 'Finish_percentile']) | |
own_type = st.selectbox("Select trimming variable", ['Own', 'Weighted Own']) | |
submitted = st.form_submit_button("Trim") | |
if submitted: | |
st.session_state['portfolio'] = predict_dupes(st.session_state['portfolio'], map_dict, site_var, type_var, Contest_Size, strength_var) | |
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Dupes'] <= max_dupes] | |
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['salary'] >= min_salary] | |
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['salary'] <= max_salary] | |
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Finish_percentile'] <= max_finish_percentile] | |
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Lineup Edge'] >= min_lineup_edge] | |
if stack_dict is not None: | |
if stack_toggle == 'All Stacks': | |
st.session_state['portfolio'] = st.session_state['portfolio'] | |
st.session_state['portfolio'] = st.session_state['portfolio'][~st.session_state['portfolio']['Stack'].isin(stack_remove)] | |
else: | |
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Stack'].isin(stack_selections)] | |
st.session_state['portfolio'] = st.session_state['portfolio'][~st.session_state['portfolio']['Stack'].isin(stack_remove)] | |
if player_remove: | |
# Create mask for lineups that contain any of the removed players | |
player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols] | |
remove_mask = st.session_state['portfolio'][player_columns].apply( | |
lambda row: not any(player in list(row) for player in player_remove), axis=1 | |
) | |
st.session_state['portfolio'] = st.session_state['portfolio'][remove_mask] | |
if player_lock: | |
# Create mask for lineups that contain all locked players | |
player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols] | |
lock_mask = st.session_state['portfolio'][player_columns].apply( | |
lambda row: all(player in list(row) for player in player_lock), axis=1 | |
) | |
st.session_state['portfolio'] = st.session_state['portfolio'][lock_mask] | |
st.session_state['portfolio'] = trim_portfolio(st.session_state['portfolio'], performance_type, own_type) | |
st.session_state['portfolio'] = st.session_state['portfolio'].sort_values(by='median', ascending=False) | |
with col2: | |
st.session_state['portfolio'] = predict_dupes(st.session_state['portfolio'], map_dict, site_var, type_var, Contest_Size, strength_var) | |
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Dupes'] <= max_dupes] | |
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['salary'] >= min_salary] | |
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['salary'] <= max_salary] | |
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Finish_percentile'] <= max_finish_percentile] | |
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Lineup Edge'] >= min_lineup_edge] | |
if stack_dict is not None: | |
if stack_toggle == 'All Stacks': | |
st.session_state['portfolio'] = st.session_state['portfolio'] | |
st.session_state['portfolio'] = st.session_state['portfolio'][~st.session_state['portfolio']['Stack'].isin(stack_remove)] | |
else: | |
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Stack'].isin(stack_selections)] | |
st.session_state['portfolio'] = st.session_state['portfolio'][~st.session_state['portfolio']['Stack'].isin(stack_remove)] | |
if player_remove: | |
# Create mask for lineups that contain any of the removed players | |
player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols] | |
remove_mask = st.session_state['portfolio'][player_columns].apply( | |
lambda row: not any(player in list(row) for player in player_remove), axis=1 | |
) | |
st.session_state['portfolio'] = st.session_state['portfolio'][remove_mask] | |
if player_lock: | |
# Create mask for lineups that contain all locked players | |
player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols] | |
lock_mask = st.session_state['portfolio'][player_columns].apply( | |
lambda row: all(player in list(row) for player in player_lock), axis=1 | |
) | |
st.session_state['portfolio'] = st.session_state['portfolio'][lock_mask] | |
st.session_state['portfolio'] = st.session_state['portfolio'].sort_values(by='median', ascending=False) | |
with st.expander("Download options"): | |
if stack_dict is not None: | |
download_type = st.selectbox("Simple or Advanced Download?", options=['Simple', 'Advanced'], key='download_choice') | |
if download_type == 'Simple': | |
st.session_state['export_file'] = st.session_state['portfolio'].copy() | |
else: | |
with st.form(key='stack_form'): | |
st.subheader("Stack Count Adjustments") | |
st.info("This allows you to fine tune the stacks that you wish to export. If you want to make sure you don't export any of a specific stack you can 0 it out.") | |
# Create a container for stack value inputs | |
sort_container = st.container() | |
with sort_container: | |
sort_var = st.selectbox("Sort export portfolio by:", options=['median', 'Lineup Edge', 'Own']) | |
# Get unique stack values | |
unique_stacks = sorted(list(set(stack_dict.values()))) | |
# Create a dictionary to store stack multipliers | |
if 'stack_multipliers' not in st.session_state: | |
st.session_state.stack_multipliers = {stack: 0.0 for stack in unique_stacks} | |
# Create columns for the stack inputs | |
num_cols = 6 # Number of columns to display | |
for i in range(0, len(unique_stacks), num_cols): | |
cols = st.columns(num_cols) | |
for j, stack in enumerate(unique_stacks[i:i+num_cols]): | |
with cols[j]: | |
# Create a unique key for each number input | |
key = f"stack_count_{stack}" | |
# Get the current count of this stack in the portfolio | |
current_stack_count = len(st.session_state['portfolio'][st.session_state['portfolio']['Stack'] == stack]) | |
# Create number input with current value and max value based on actual count | |
st.session_state.stack_multipliers[stack] = st.number_input( | |
f"{stack} count", | |
min_value=0.0, | |
max_value=float(current_stack_count), | |
value=0.0, | |
step=1.0, | |
key=key | |
) | |
portfolio_copy = st.session_state['portfolio'].copy() | |
submitted = st.form_submit_button("Submit") | |
if submitted: | |
# Create a list to store selected rows | |
selected_rows = [] | |
# For each stack, select the top N rows based on the count value | |
for stack in unique_stacks: | |
if stack in st.session_state.stack_multipliers: | |
count = int(st.session_state.stack_multipliers[stack]) | |
# Get rows for this stack | |
stack_rows = portfolio_copy[portfolio_copy['Stack'] == stack] | |
# Sort by median and take top N rows | |
top_rows = stack_rows.nlargest(count, sort_var) | |
selected_rows.append(top_rows) | |
# Combine all selected rows | |
portfolio_concat = pd.concat(selected_rows) | |
# Update export_file with filtered data | |
st.session_state['export_file'] = portfolio_concat.copy() | |
for col in st.session_state['export_file'].columns: | |
if col not in excluded_cols: | |
st.session_state['export_file'][col] = st.session_state['export_file'][col].map(st.session_state['export_dict']) | |
st.write('Export portfolio updated!') | |
else: | |
st.session_state['export_file'] = st.session_state['portfolio'].copy() | |
if 'export_file' in st.session_state: | |
st.download_button(label="Download Portfolio", data=st.session_state['export_file'].to_csv(index=False), file_name="portfolio.csv", mime="text/csv") | |
else: | |
st.error("No portfolio to download") | |
# Add pagination controls below the dataframe | |
total_rows = len(st.session_state['portfolio']) | |
rows_per_page = 500 | |
total_pages = (total_rows + rows_per_page - 1) // rows_per_page # Ceiling division | |
# Initialize page number in session state if not exists | |
if 'current_page' not in st.session_state: | |
st.session_state.current_page = 1 | |
# Display current page range info and pagination control in a single line | |
st.write( | |
f"Showing rows {(st.session_state.current_page - 1) * rows_per_page + 1} " | |
f"to {min(st.session_state.current_page * rows_per_page, total_rows)} of {total_rows}" | |
) | |
# Add page number input | |
st.session_state.current_page = st.number_input( | |
f"Page (1-{total_pages})", | |
min_value=1, | |
max_value=total_pages, | |
value=st.session_state.current_page | |
) | |
# Calculate start and end indices for current page | |
start_idx = (st.session_state.current_page - 1) * rows_per_page | |
end_idx = min(start_idx + rows_per_page, total_rows) | |
# Get the subset of data for the current page | |
current_page_data = st.session_state['portfolio'].iloc[start_idx:end_idx] | |
# Display the paginated dataframe first | |
st.dataframe( | |
current_page_data.style | |
.background_gradient(axis=0) | |
.background_gradient(cmap='RdYlGn') | |
.background_gradient(cmap='RdYlGn_r', subset=['Finish_percentile', 'Own', 'Dupes']) | |
.format(freq_format, precision=2), | |
height=1000, | |
use_container_width=True | |
) | |
# Create player summary dataframe | |
player_stats = [] | |
player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols] | |
if type_var == 'Showdown': | |
# Handle Captain positions | |
for player in player_names: | |
# Create mask for lineups where this player is Captain (first column) | |
cpt_mask = st.session_state['portfolio'][player_columns[0]] == player | |
if cpt_mask.any(): | |
player_stats.append({ | |
'Player': f"{player} (CPT)", | |
'Lineup Count': cpt_mask.sum(), | |
'Avg Median': st.session_state['portfolio'][cpt_mask]['median'].mean(), | |
'Avg Own': st.session_state['portfolio'][cpt_mask]['Own'].mean(), | |
'Avg Dupes': st.session_state['portfolio'][cpt_mask]['Dupes'].mean(), | |
'Avg Finish %': st.session_state['portfolio'][cpt_mask]['Finish_percentile'].mean(), | |
'Avg Lineup Edge': st.session_state['portfolio'][cpt_mask]['Lineup Edge'].mean(), | |
}) | |
# Create mask for lineups where this player is FLEX (other columns) | |
flex_mask = st.session_state['portfolio'][player_columns[1:]].apply( | |
lambda row: player in list(row), axis=1 | |
) | |
if flex_mask.any(): | |
player_stats.append({ | |
'Player': f"{player} (FLEX)", | |
'Lineup Count': flex_mask.sum(), | |
'Avg Median': st.session_state['portfolio'][flex_mask]['median'].mean(), | |
'Avg Own': st.session_state['portfolio'][flex_mask]['Own'].mean(), | |
'Avg Dupes': st.session_state['portfolio'][flex_mask]['Dupes'].mean(), | |
'Avg Finish %': st.session_state['portfolio'][flex_mask]['Finish_percentile'].mean(), | |
'Avg Lineup Edge': st.session_state['portfolio'][flex_mask]['Lineup Edge'].mean(), | |
}) | |
else: | |
# Original Classic format processing | |
for player in player_names: | |
player_mask = st.session_state['portfolio'][player_columns].apply( | |
lambda row: player in list(row), axis=1 | |
) | |
if player_mask.any(): | |
player_stats.append({ | |
'Player': player, | |
'Lineup Count': player_mask.sum(), | |
'Avg Median': st.session_state['portfolio'][player_mask]['median'].mean(), | |
'Avg Own': st.session_state['portfolio'][player_mask]['Own'].mean(), | |
'Avg Dupes': st.session_state['portfolio'][player_mask]['Dupes'].mean(), | |
'Avg Finish %': st.session_state['portfolio'][player_mask]['Finish_percentile'].mean(), | |
'Avg Lineup Edge': st.session_state['portfolio'][player_mask]['Lineup Edge'].mean(), | |
}) | |
player_summary = pd.DataFrame(player_stats) | |
player_summary = player_summary.sort_values('Lineup Count', ascending=False) | |
st.subheader("Player Summary") | |
st.dataframe( | |
player_summary.style | |
.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Avg Finish %', 'Avg Own', 'Avg Dupes']) | |
.format({ | |
'Avg Median': '{:.2f}', | |
'Avg Own': '{:.2f}', | |
'Avg Dupes': '{:.2f}', | |
'Avg Finish %': '{:.2%}', | |
'Avg Lineup Edge': '{:.2%}' | |
}), | |
height=400, | |
use_container_width=True | |
) |