|
import pandas as pd |
|
|
|
def distribute_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols: list): |
|
|
|
for slack_var in range(1, 20): |
|
concat_portfolio = pd.DataFrame(columns=portfolio.columns) |
|
|
|
for finishing_range in range(1, 20): |
|
finish_threshold = (finishing_range / 100) |
|
rows_to_drop = [] |
|
working_portfolio = portfolio.copy() |
|
if finishing_range == 1: |
|
working_portfolio = working_portfolio[working_portfolio['Finish_percentile'] <= finish_threshold] |
|
elif finishing_range == 20: |
|
working_portfolio = working_portfolio[working_portfolio['Finish_percentile'] >= (finish_threshold - 1)] |
|
else: |
|
working_portfolio = working_portfolio[working_portfolio['Finish_percentile'] <= finish_threshold] |
|
working_portfolio = working_portfolio[working_portfolio['Finish_percentile'] >= (finish_threshold - 1)] |
|
working_portfolio = working_portfolio.sort_values(by='median', ascending = False) |
|
working_portfolio = working_portfolio.reset_index(drop=True) |
|
curr_own_type_max = working_portfolio.loc[0, 'Weighted Own'] + (slack_var / 20 * working_portfolio.loc[0, 'Weighted Own']) |
|
|
|
for i in range(1, len(working_portfolio)): |
|
if working_portfolio.loc[i, 'Weighted Own'] > curr_own_type_max: |
|
rows_to_drop.append(i) |
|
else: |
|
curr_own_type_max = working_portfolio.loc[i, 'Weighted Own'] + (slack_var / 20 * working_portfolio.loc[i, 'Weighted Own']) |
|
|
|
working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True) |
|
concat_portfolio = pd.concat([concat_portfolio, working_portfolio]) |
|
|
|
if len(concat_portfolio) >= lineup_target: |
|
return concat_portfolio.sort_values(by='Finish_percentile', ascending=True).head(lineup_target) |
|
|
|
return concat_portfolio.sort_values(by='Finish_percentile', ascending=True) |
|
|