DFS_Portfolio_Manager / global_func /large_field_preset.py
James McCool
Remove filtering of working_portfolio by 'Lineup Edge' in large_field_preset function to allow for broader selection of portfolios, enhancing lineup options.
88b7968
raw
history blame
1.88 kB
import pandas as pd
def large_field_preset(portfolio: pd.DataFrame, lineup_target: int):
for slack_var in range(1, 20):
concat_portfolio = pd.DataFrame(columns=portfolio.columns)
for team in portfolio['Stack'].unique():
rows_to_drop = []
working_portfolio = portfolio.copy()
working_portfolio['median_rank'] = working_portfolio['median'].rank(method='first', ascending=False)
working_portfolio['finish_percentile_rank'] = working_portfolio['Finish_percentile'].rank(method='first', ascending=True)
working_portfolio['rank_agg'] = (working_portfolio['median_rank'] + working_portfolio['finish_percentile_rank']) / 2
working_portfolio = working_portfolio[working_portfolio['Stack'] == team].sort_values(by='rank_agg', ascending = True)
working_portfolio = working_portfolio.reset_index(drop=True)
curr_own_type_max = working_portfolio.loc[0, 'Own'] + (slack_var / 20 * working_portfolio.loc[0, 'Own'])
for i in range(1, len(working_portfolio)):
if working_portfolio.loc[i, 'Own'] > curr_own_type_max:
rows_to_drop.append(i)
else:
curr_own_type_max = working_portfolio.loc[i, 'Own'] + (slack_var / 20 * working_portfolio.loc[i, 'Own'])
working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
working_portfolio = working_portfolio.drop(columns=['median_rank', 'finish_percentile_rank', 'rank_agg'])
concat_portfolio = pd.concat([concat_portfolio, working_portfolio])
if len(concat_portfolio) >= lineup_target:
return concat_portfolio.sort_values(by='Finish_percentile', ascending=True).head(lineup_target)
return concat_portfolio.sort_values(by='Finish_percentile', ascending=True)