James McCool
Enhance salary data processing in load_file.py: add a try-except block to convert salary values to integers after removing unwanted characters, improving data integrity during file handling.
a31c2f9
raw
history blame
1.36 kB
import streamlit as st
import numpy as np
import pandas as pd
import time
from fuzzywuzzy import process
import re
## import global functions
from global_func.clean_player_name import clean_player_name
def load_file(upload):
if upload is not None:
try:
clean_name = re.sub(r' \(\d+\)', '', upload.name)
print(clean_name)
print(upload.name)
if clean_name.endswith('.csv'):
df = pd.read_csv(upload)
elif clean_name.endswith(('.xls', '.xlsx')):
df = pd.read_excel(upload)
else:
st.error('Please upload either a CSV or Excel file')
return None, None
try:
df['salary'] = df['salary'].astype(str).str.replace([',', '$', ' '], '', regex=True).astype(int)
st.print('replaced salary symbols')
except:
pass
export_df = df.copy()
for col in df.columns:
if df[col].dtype == 'object':
df[col] = df[col].apply(lambda x: clean_player_name(x) if isinstance(x, str) else x)
return export_df, df
except Exception as e:
st.error(f'Error loading file: {str(e)}')
return None
return None