James McCool
Update weighted ownership calculation in predict_dupes.py: adjust the multiplication factor for ownership values and change the return value to a larger scale, enhancing the accuracy of percentage representation in ownership metrics.
606905f
raw
history blame
17.8 kB
import streamlit as st
import numpy as np
import pandas as pd
import time
from fuzzywuzzy import process
import math
def calculate_weighted_ownership(row_ownerships):
"""
Calculate weighted ownership based on the formula:
(AVERAGE of (each value's average with overall average)) * count - (max - min)
Args:
row_ownerships: Series containing ownership values in percentage form (e.g., 24.2213 for 24.2213%)
Returns:
float: Calculated weighted ownership value
"""
# Drop NaN values and convert percentages to decimals
row_ownerships = row_ownerships.dropna() / 100
# Get the mean of all ownership values
row_mean = row_ownerships.mean()
# Calculate average of each value with the overall mean
value_means = [(val + row_mean) / 2 for val in row_ownerships]
# Take average of all those means
avg_of_means = sum(value_means) / len(row_ownerships)
# Multiply by count of values
weighted = avg_of_means * (len(row_ownerships) * 1)
# Subtract (max - min)
weighted = weighted - (row_ownerships.max() - row_ownerships.min())
# Convert back to percentage form to match input format
return weighted * 10000
def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, strength_var, sport_var):
if strength_var == 'Weak':
dupes_multiplier = .75
percentile_multiplier = .90
elif strength_var == 'Average':
dupes_multiplier = 1.00
percentile_multiplier = 1.00
elif strength_var == 'Sharp':
dupes_multiplier = 1.25
percentile_multiplier = 1.10
max_ownership = max(maps_dict['own_map'].values()) / 100
average_ownership = np.mean(list(maps_dict['own_map'].values())) / 100
if site_var == 'Fanduel':
if type_var == 'Showdown':
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank']
own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own']
calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'own_ratio', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
flex_ownerships = pd.concat([
portfolio.iloc[:,1].map(maps_dict['own_map']),
portfolio.iloc[:,2].map(maps_dict['own_map']),
portfolio.iloc[:,3].map(maps_dict['own_map']),
portfolio.iloc[:,4].map(maps_dict['own_map'])
])
flex_rank = flex_ownerships.rank(pct=True)
# Assign ranks back to individual columns using the same rank scale
portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True)
portfolio['FLEX1_Own_percent_rank'] = portfolio.iloc[:,1].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
portfolio['FLEX2_Own_percent_rank'] = portfolio.iloc[:,2].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
portfolio['FLEX3_Own_percent_rank'] = portfolio.iloc[:,3].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
portfolio['FLEX4_Own_percent_rank'] = portfolio.iloc[:,4].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']) / 100
portfolio['FLEX1_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']) / 100
portfolio['FLEX2_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']) / 100
portfolio['FLEX3_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']) / 100
portfolio['FLEX4_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']) / 100
portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
# Calculate dupes formula
portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (60000 - portfolio['Own'])) / 100) - ((60000 - portfolio['salary']) / 100)
portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier
# Round and handle negative values
portfolio['Dupes'] = np.where(
np.round(portfolio['dupes_calc'], 0) <= 0,
0,
np.round(portfolio['dupes_calc'], 0) - 1
)
if type_var == 'Classic':
num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']])
dup_count_columns = [f'player_{i}_percent_rank' for i in range(1, num_players + 1)]
own_columns = [f'player_{i}_own' for i in range(1, num_players + 1)]
calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'own_ratio', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
for i in range(1, num_players + 1):
portfolio[f'player_{i}_percent_rank'] = portfolio.iloc[:,i-1].map(maps_dict['own_percent_rank'])
portfolio[f'player_{i}_own'] = portfolio.iloc[:,i-1].map(maps_dict['own_map']) / 100
portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (60000 - portfolio['Own'])) / 100) - ((60000 - portfolio['salary']) / 100)
portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier
# Round and handle negative values
portfolio['Dupes'] = np.where(
np.round(portfolio['dupes_calc'], 0) <= 0,
0,
np.round(portfolio['dupes_calc'], 0) - 1
)
elif site_var == 'Draftkings':
if type_var == 'Showdown':
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']
calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
flex_ownerships = pd.concat([
portfolio.iloc[:,1].map(maps_dict['own_map']),
portfolio.iloc[:,2].map(maps_dict['own_map']),
portfolio.iloc[:,3].map(maps_dict['own_map']),
portfolio.iloc[:,4].map(maps_dict['own_map']),
portfolio.iloc[:,5].map(maps_dict['own_map'])
])
flex_rank = flex_ownerships.rank(pct=True)
# Assign ranks back to individual columns using the same rank scale
portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True)
portfolio['FLEX1_Own_percent_rank'] = portfolio.iloc[:,1].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
portfolio['FLEX2_Own_percent_rank'] = portfolio.iloc[:,2].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
portfolio['FLEX3_Own_percent_rank'] = portfolio.iloc[:,3].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
portfolio['FLEX4_Own_percent_rank'] = portfolio.iloc[:,4].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
portfolio['FLEX5_Own_percent_rank'] = portfolio.iloc[:,5].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']) / 100
portfolio['FLEX1_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']) / 100
portfolio['FLEX2_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']) / 100
portfolio['FLEX3_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']) / 100
portfolio['FLEX4_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']) / 100
portfolio['FLEX5_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']) / 100
portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
# Calculate dupes formula
portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier
# Round and handle negative values
portfolio['Dupes'] = np.where(
np.round(portfolio['dupes_calc'], 0) <= 0,
0,
np.round(portfolio['dupes_calc'], 0) - 1
)
if type_var == 'Classic':
if sport_var == 'CS2':
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']
calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
flex_ownerships = pd.concat([
portfolio.iloc[:,1].map(maps_dict['own_map']),
portfolio.iloc[:,2].map(maps_dict['own_map']),
portfolio.iloc[:,3].map(maps_dict['own_map']),
portfolio.iloc[:,4].map(maps_dict['own_map']),
portfolio.iloc[:,5].map(maps_dict['own_map'])
])
flex_rank = flex_ownerships.rank(pct=True)
# Assign ranks back to individual columns using the same rank scale
portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True)
portfolio['FLEX1_Own_percent_rank'] = portfolio.iloc[:,1].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
portfolio['FLEX2_Own_percent_rank'] = portfolio.iloc[:,2].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
portfolio['FLEX3_Own_percent_rank'] = portfolio.iloc[:,3].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
portfolio['FLEX4_Own_percent_rank'] = portfolio.iloc[:,4].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
portfolio['FLEX5_Own_percent_rank'] = portfolio.iloc[:,5].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']) / 100
portfolio['FLEX1_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']) / 100
portfolio['FLEX2_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']) / 100
portfolio['FLEX3_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']) / 100
portfolio['FLEX4_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']) / 100
portfolio['FLEX5_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']) / 100
portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
# Calculate dupes formula
portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier
# Round and handle negative values
portfolio['Dupes'] = np.where(
np.round(portfolio['dupes_calc'], 0) <= 0,
0,
np.round(portfolio['dupes_calc'], 0) - 1
)
elif sport_var != 'CS2':
num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']])
dup_count_columns = [f'player_{i}_percent_rank' for i in range(1, num_players + 1)]
own_columns = [f'player_{i}_own' for i in range(1, num_players + 1)]
calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
for i in range(1, num_players + 1):
portfolio[f'player_{i}_percent_rank'] = portfolio.iloc[:,i-1].map(maps_dict['own_percent_rank'])
portfolio[f'player_{i}_own'] = portfolio.iloc[:,i-1].map(maps_dict['own_map']) / 100
portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier
# Round and handle negative values
portfolio['Dupes'] = np.where(
np.round(portfolio['dupes_calc'], 0) <= 0,
0,
np.round(portfolio['dupes_calc'], 0) - 1
)
portfolio['Dupes'] = np.round(portfolio['Dupes'], 0)
portfolio['own_ratio'] = np.where(
portfolio[own_columns].isin([max_ownership]).any(axis=1),
portfolio['own_sum'] / portfolio['own_average'],
(portfolio['own_sum'] - max_ownership) / portfolio['own_average']
)
percentile_cut_scalar = portfolio['median'].max() # Get scalar value
if type_var == 'Classic':
if sport_var == 'CS2':
own_ratio_nerf = 2
elif sport_var != 'CS2':
own_ratio_nerf = 1.5
elif type_var == 'Showdown':
own_ratio_nerf = 1.5
portfolio['Finish_percentile'] = portfolio.apply(
lambda row: .0005 if (row['own_ratio'] - own_ratio_nerf) / ((10 * (row['median'] / percentile_cut_scalar)) / 2) < .0005
else (row['own_ratio'] - own_ratio_nerf) / ((10 * (row['median'] / percentile_cut_scalar)) / 2),
axis=1
)
portfolio['Ref_Proj'] = portfolio['median'].max()
portfolio['Max_Proj'] = portfolio['Ref_Proj'] + 10
portfolio['Min_Proj'] = portfolio['Ref_Proj'] - 10
portfolio['Avg_Ref'] = (portfolio['Max_Proj'] + portfolio['Min_Proj']) / 2
portfolio['Win%'] = (((portfolio['median'] / portfolio['Avg_Ref']) - (0.1 + ((portfolio['Ref_Proj'] - portfolio['median'])/100))) / (Contest_Size / 1000)) / 10
max_allowed_win = (1 / Contest_Size) * 5
portfolio['Win%'] = portfolio['Win%'] / portfolio['Win%'].max() * max_allowed_win
portfolio['Finish_percentile'] = portfolio['Finish_percentile'] + .005 + (.005 * (Contest_Size / 10000))
portfolio['Finish_percentile'] = portfolio['Finish_percentile'] * percentile_multiplier
portfolio['Win%'] = portfolio['Win%'] * (1 - portfolio['Finish_percentile'])
portfolio['low_own_count'] = portfolio[own_columns].apply(lambda row: (row < 0.10).sum(), axis=1)
portfolio['Finish_percentile'] = portfolio.apply(lambda row: row['Finish_percentile'] if row['low_own_count'] <= 0 else row['Finish_percentile'] / row['low_own_count'], axis=1)
portfolio['Lineup Edge'] = portfolio['Win%'] * ((.5 - portfolio['Finish_percentile']) * (Contest_Size / 2.5))
portfolio['Lineup Edge'] = portfolio.apply(lambda row: row['Lineup Edge'] / (row['Dupes'] + 1) if row['Dupes'] > 0 else row['Lineup Edge'], axis=1)
portfolio['Lineup Edge'] = portfolio['Lineup Edge'] - portfolio['Lineup Edge'].mean()
portfolio['Weighted Own'] = portfolio[own_columns].apply(calculate_weighted_ownership, axis=1)
portfolio['Geomean'] = np.power((portfolio[own_columns] * 100).product(axis=1), 1 / len(own_columns))
portfolio = portfolio.drop(columns=dup_count_columns)
portfolio = portfolio.drop(columns=own_columns)
portfolio = portfolio.drop(columns=calc_columns)
return portfolio