|
import pandas as pd |
|
|
|
def trim_portfolio(portfolio: pd.DataFrame, trim_slack: float, performance_type: str, own_type: str, performance_threshold_high: float, performance_threshold_low: float, own_threshold_high: float, own_threshold_low: float): |
|
if performance_type == 'Finish_percentile': |
|
working_portfolio = portfolio.sort_values(by=performance_type, ascending = True).reset_index(drop=True) |
|
else: |
|
working_portfolio = portfolio.sort_values(by=performance_type, ascending = False).reset_index(drop=True) |
|
rows_to_drop = [] |
|
curr_own_type_max = working_portfolio.loc[0, own_type] + (trim_slack * working_portfolio.loc[0, own_type]) |
|
|
|
for i in range(1, len(working_portfolio)): |
|
if own_type == 'Diversity': |
|
if working_portfolio.loc[i, own_type] < curr_own_type_max and \ |
|
working_portfolio.loc[i, performance_type] > performance_threshold_low and \ |
|
working_portfolio.loc[i, performance_type] <= performance_threshold_high and \ |
|
working_portfolio.loc[i, own_type] > own_threshold_low and \ |
|
working_portfolio.loc[i, own_type] <= own_threshold_high: |
|
rows_to_drop.append(i) |
|
else: |
|
curr_own_type_max = working_portfolio.loc[i, own_type] + (trim_slack * working_portfolio.loc[i, own_type]) |
|
else: |
|
if working_portfolio.loc[i, own_type] > curr_own_type_max and \ |
|
working_portfolio.loc[i, performance_type] > performance_threshold_low and \ |
|
working_portfolio.loc[i, performance_type] <= performance_threshold_high and \ |
|
working_portfolio.loc[i, own_type] > own_threshold_low and \ |
|
working_portfolio.loc[i, own_type] <= own_threshold_high: |
|
rows_to_drop.append(i) |
|
else: |
|
curr_own_type_max = working_portfolio.loc[i, own_type] + (trim_slack * working_portfolio.loc[i, own_type]) |
|
|
|
working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True) |
|
return working_portfolio |