Multichem commited on
Commit
0ce635a
·
1 Parent(s): aa9013f

Update dupes calculation in predict_dupes.py by adjusting salary thresholds from 59700 and 49700 to 60000 and 50000 respectively, enhancing the accuracy of duplicate predictions across different contest sizes.

Browse files
Files changed (1) hide show
  1. global_func/predict_dupes.py +6 -6
global_func/predict_dupes.py CHANGED
@@ -335,7 +335,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
335
  )
336
 
337
  # Calculate dupes formula
338
- portfolio['dupes_calc'] = (portfolio['avg_own_rank'] / 1000) * (Contest_Size / 100) + ((portfolio['salary'] - (59700 - portfolio['Own'])) / 100) - ((59700 - portfolio['salary']) / 100)
339
  portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000))) * portfolio['top_x_presence']
340
 
341
  # Round and handle negative values
@@ -366,7 +366,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
366
  lambda row: sum(1 for player in row if player in top_x_ownership_keys), axis=1
367
  )
368
 
369
- portfolio['dupes_calc'] = (portfolio['avg_own_rank'] / 1000) * (Contest_Size / 100) + ((portfolio['salary'] - (59700 - portfolio['Own'])) / 100) - ((59700 - portfolio['salary']) / 100)
370
  portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000))) * portfolio['top_x_presence']
371
  # Round and handle negative values
372
  portfolio['Dupes'] = np.where(
@@ -445,7 +445,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
445
  )
446
 
447
  # Calculate dupes formula
448
- portfolio['dupes_calc'] = (portfolio['avg_own_rank'] / 1000) * (Contest_Size / 100) + ((portfolio['salary'] - (49700 - portfolio['Own'])) / 100) - ((49700 - portfolio['salary']) / 100)
449
  portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000))) * portfolio['top_x_presence']
450
 
451
  # Round and handle negative values
@@ -496,7 +496,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
496
  )
497
 
498
  # Calculate dupes formula
499
- portfolio['dupes_calc'] = (portfolio['avg_own_rank'] / 1000) * (Contest_Size / 100) + ((portfolio['salary'] - (49700 - portfolio['Own'])) / 50) - ((49700 - portfolio['salary']) / 50)
500
  portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000))) * portfolio['top_x_presence']
501
 
502
  # Round and handle negative values
@@ -549,7 +549,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
549
  )
550
 
551
  # Calculate dupes formula
552
- portfolio['dupes_calc'] = (portfolio['avg_own_rank'] / 1000) * (Contest_Size / 100) + ((portfolio['salary'] - (49700 - portfolio['Own'])) / 50) - ((49700 - portfolio['salary']) / 50)
553
  portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000))) * portfolio['top_x_presence']
554
 
555
  # Round and handle negative values
@@ -579,7 +579,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
579
  lambda row: sum(1 for player in row if player in top_x_ownership_keys), axis=1
580
  )
581
 
582
- portfolio['dupes_calc'] = (portfolio['avg_own_rank'] / 1000) * (Contest_Size / 100) + ((portfolio['salary'] - (49700 - portfolio['Own'])) / 100) - ((49700 - portfolio['salary']) / 100)
583
  portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000))) * portfolio['top_x_presence']
584
  # Round and handle negative values
585
  portfolio['Dupes'] = np.where(
 
335
  )
336
 
337
  # Calculate dupes formula
338
+ portfolio['dupes_calc'] = (portfolio['avg_own_rank'] / 1000) * (Contest_Size / 100) + ((portfolio['salary'] - (60000 - portfolio['Own'])) / 100) - ((59700 - portfolio['salary']) / 100)
339
  portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000))) * portfolio['top_x_presence']
340
 
341
  # Round and handle negative values
 
366
  lambda row: sum(1 for player in row if player in top_x_ownership_keys), axis=1
367
  )
368
 
369
+ portfolio['dupes_calc'] = (portfolio['avg_own_rank'] / 1000) * (Contest_Size / 100) + ((portfolio['salary'] - (60000 - portfolio['Own'])) / 100) - ((59700 - portfolio['salary']) / 100)
370
  portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000))) * portfolio['top_x_presence']
371
  # Round and handle negative values
372
  portfolio['Dupes'] = np.where(
 
445
  )
446
 
447
  # Calculate dupes formula
448
+ portfolio['dupes_calc'] = (portfolio['avg_own_rank'] / 1000) * (Contest_Size / 100) + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((49700 - portfolio['salary']) / 100)
449
  portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000))) * portfolio['top_x_presence']
450
 
451
  # Round and handle negative values
 
496
  )
497
 
498
  # Calculate dupes formula
499
+ portfolio['dupes_calc'] = (portfolio['avg_own_rank'] / 1000) * (Contest_Size / 100) + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 50) - ((49700 - portfolio['salary']) / 50)
500
  portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000))) * portfolio['top_x_presence']
501
 
502
  # Round and handle negative values
 
549
  )
550
 
551
  # Calculate dupes formula
552
+ portfolio['dupes_calc'] = (portfolio['avg_own_rank'] / 1000) * (Contest_Size / 100) + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 50) - ((49700 - portfolio['salary']) / 50)
553
  portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000))) * portfolio['top_x_presence']
554
 
555
  # Round and handle negative values
 
579
  lambda row: sum(1 for player in row if player in top_x_ownership_keys), axis=1
580
  )
581
 
582
+ portfolio['dupes_calc'] = (portfolio['avg_own_rank'] / 1000) * (Contest_Size / 100) + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((49700 - portfolio['salary']) / 100)
583
  portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000))) * portfolio['top_x_presence']
584
  # Round and handle negative values
585
  portfolio['Dupes'] = np.where(