James McCool commited on
Commit
1107ea4
·
1 Parent(s): 88b7968

Refactor large_field_preset function to simplify ranking logic by removing median and finish percentile rankings, and adjust filtering criteria to focus on 'Finish_percentile' for team-based selection, enhancing accuracy in lineup targeting.

Browse files
Files changed (1) hide show
  1. global_func/large_field_preset.py +4 -8
global_func/large_field_preset.py CHANGED
@@ -8,21 +8,17 @@ def large_field_preset(portfolio: pd.DataFrame, lineup_target: int):
8
  for team in portfolio['Stack'].unique():
9
  rows_to_drop = []
10
  working_portfolio = portfolio.copy()
11
- working_portfolio['median_rank'] = working_portfolio['median'].rank(method='first', ascending=False)
12
- working_portfolio['finish_percentile_rank'] = working_portfolio['Finish_percentile'].rank(method='first', ascending=True)
13
- working_portfolio['rank_agg'] = (working_portfolio['median_rank'] + working_portfolio['finish_percentile_rank']) / 2
14
- working_portfolio = working_portfolio[working_portfolio['Stack'] == team].sort_values(by='rank_agg', ascending = True)
15
  working_portfolio = working_portfolio.reset_index(drop=True)
16
- curr_own_type_max = working_portfolio.loc[0, 'Own'] + (slack_var / 20 * working_portfolio.loc[0, 'Own'])
17
 
18
  for i in range(1, len(working_portfolio)):
19
- if working_portfolio.loc[i, 'Own'] > curr_own_type_max:
20
  rows_to_drop.append(i)
21
  else:
22
- curr_own_type_max = working_portfolio.loc[i, 'Own'] + (slack_var / 20 * working_portfolio.loc[i, 'Own'])
23
 
24
  working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
25
- working_portfolio = working_portfolio.drop(columns=['median_rank', 'finish_percentile_rank', 'rank_agg'])
26
  concat_portfolio = pd.concat([concat_portfolio, working_portfolio])
27
  if len(concat_portfolio) >= lineup_target:
28
  return concat_portfolio.sort_values(by='Finish_percentile', ascending=True).head(lineup_target)
 
8
  for team in portfolio['Stack'].unique():
9
  rows_to_drop = []
10
  working_portfolio = portfolio.copy()
11
+ working_portfolio = working_portfolio[working_portfolio['Stack'] == team].sort_values(by='median', ascending = False)
 
 
 
12
  working_portfolio = working_portfolio.reset_index(drop=True)
13
+ curr_own_type_max = working_portfolio.loc[0, 'Finish_percentile'] + (slack_var / 20 * working_portfolio.loc[0, 'Finish_percentile'])
14
 
15
  for i in range(1, len(working_portfolio)):
16
+ if working_portfolio.loc[i, 'Finish_percentile'] < curr_own_type_max:
17
  rows_to_drop.append(i)
18
  else:
19
+ curr_own_type_max = working_portfolio.loc[i, 'Finish_percentile'] + (slack_var / 20 * working_portfolio.loc[i, 'Finish_percentile'])
20
 
21
  working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
 
22
  concat_portfolio = pd.concat([concat_portfolio, working_portfolio])
23
  if len(concat_portfolio) >= lineup_target:
24
  return concat_portfolio.sort_values(by='Finish_percentile', ascending=True).head(lineup_target)