James McCool
commited on
Commit
·
1107ea4
1
Parent(s):
88b7968
Refactor large_field_preset function to simplify ranking logic by removing median and finish percentile rankings, and adjust filtering criteria to focus on 'Finish_percentile' for team-based selection, enhancing accuracy in lineup targeting.
Browse files
global_func/large_field_preset.py
CHANGED
@@ -8,21 +8,17 @@ def large_field_preset(portfolio: pd.DataFrame, lineup_target: int):
|
|
8 |
for team in portfolio['Stack'].unique():
|
9 |
rows_to_drop = []
|
10 |
working_portfolio = portfolio.copy()
|
11 |
-
working_portfolio
|
12 |
-
working_portfolio['finish_percentile_rank'] = working_portfolio['Finish_percentile'].rank(method='first', ascending=True)
|
13 |
-
working_portfolio['rank_agg'] = (working_portfolio['median_rank'] + working_portfolio['finish_percentile_rank']) / 2
|
14 |
-
working_portfolio = working_portfolio[working_portfolio['Stack'] == team].sort_values(by='rank_agg', ascending = True)
|
15 |
working_portfolio = working_portfolio.reset_index(drop=True)
|
16 |
-
curr_own_type_max = working_portfolio.loc[0, '
|
17 |
|
18 |
for i in range(1, len(working_portfolio)):
|
19 |
-
if working_portfolio.loc[i, '
|
20 |
rows_to_drop.append(i)
|
21 |
else:
|
22 |
-
curr_own_type_max = working_portfolio.loc[i, '
|
23 |
|
24 |
working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
|
25 |
-
working_portfolio = working_portfolio.drop(columns=['median_rank', 'finish_percentile_rank', 'rank_agg'])
|
26 |
concat_portfolio = pd.concat([concat_portfolio, working_portfolio])
|
27 |
if len(concat_portfolio) >= lineup_target:
|
28 |
return concat_portfolio.sort_values(by='Finish_percentile', ascending=True).head(lineup_target)
|
|
|
8 |
for team in portfolio['Stack'].unique():
|
9 |
rows_to_drop = []
|
10 |
working_portfolio = portfolio.copy()
|
11 |
+
working_portfolio = working_portfolio[working_portfolio['Stack'] == team].sort_values(by='median', ascending = False)
|
|
|
|
|
|
|
12 |
working_portfolio = working_portfolio.reset_index(drop=True)
|
13 |
+
curr_own_type_max = working_portfolio.loc[0, 'Finish_percentile'] + (slack_var / 20 * working_portfolio.loc[0, 'Finish_percentile'])
|
14 |
|
15 |
for i in range(1, len(working_portfolio)):
|
16 |
+
if working_portfolio.loc[i, 'Finish_percentile'] < curr_own_type_max:
|
17 |
rows_to_drop.append(i)
|
18 |
else:
|
19 |
+
curr_own_type_max = working_portfolio.loc[i, 'Finish_percentile'] + (slack_var / 20 * working_portfolio.loc[i, 'Finish_percentile'])
|
20 |
|
21 |
working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
|
|
|
22 |
concat_portfolio = pd.concat([concat_portfolio, working_portfolio])
|
23 |
if len(concat_portfolio) >= lineup_target:
|
24 |
return concat_portfolio.sort_values(by='Finish_percentile', ascending=True).head(lineup_target)
|