James McCool
commited on
Commit
·
1c0e798
1
Parent(s):
efb1867
Add 'Reduce Volatility' preset option in app.py and implement reduce_volatility_preset function. This update enhances user options for lineup management by allowing users to manage volatility in their selections, improving overall portfolio strategy.
Browse files- app.py +4 -1
- global_func/reduce_volatility_preset.py +30 -0
app.py
CHANGED
@@ -24,6 +24,7 @@ from global_func.small_field_preset import small_field_preset
|
|
24 |
from global_func.large_field_preset import large_field_preset
|
25 |
from global_func.hedging_preset import hedging_preset
|
26 |
from global_func.volatility_preset import volatility_preset
|
|
|
27 |
|
28 |
freq_format = {'Finish_percentile': '{:.2%}', 'Lineup Edge': '{:.2%}', 'Win%': '{:.2%}'}
|
29 |
stacking_sports = ['MLB', 'NHL', 'NFL']
|
@@ -1112,7 +1113,7 @@ with tab2:
|
|
1112 |
with st.expander('Presets'):
|
1113 |
st.info("Still heavily in testing here, I'll announce when they are ready for use.")
|
1114 |
with st.form(key='Small Field Preset'):
|
1115 |
-
preset_choice = st.selectbox("Preset", options=['Small Field (Heavy Own)', 'Large Field (Manage Diversity)', 'Hedge Chalk (Manage Leverage)', 'Volatility (Heavy Lineup Edge)'], index=0)
|
1116 |
lineup_target = st.number_input("Lineups to produce", value=150, min_value=1, step=1)
|
1117 |
submitted = st.form_submit_button("Submit")
|
1118 |
if submitted:
|
@@ -1124,6 +1125,8 @@ with tab2:
|
|
1124 |
parsed_frame = volatility_preset(st.session_state['working_frame'], lineup_target, excluded_cols)
|
1125 |
elif preset_choice == 'Hedge Chalk (Manage Leverage)':
|
1126 |
parsed_frame = hedging_preset(st.session_state['working_frame'], lineup_target, st.session_state['projections_df'])
|
|
|
|
|
1127 |
st.session_state['working_frame'] = parsed_frame.reset_index(drop=True)
|
1128 |
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
|
1129 |
|
|
|
24 |
from global_func.large_field_preset import large_field_preset
|
25 |
from global_func.hedging_preset import hedging_preset
|
26 |
from global_func.volatility_preset import volatility_preset
|
27 |
+
from global_func.reduce_volatility_preset import reduce_volatility_preset
|
28 |
|
29 |
freq_format = {'Finish_percentile': '{:.2%}', 'Lineup Edge': '{:.2%}', 'Win%': '{:.2%}'}
|
30 |
stacking_sports = ['MLB', 'NHL', 'NFL']
|
|
|
1113 |
with st.expander('Presets'):
|
1114 |
st.info("Still heavily in testing here, I'll announce when they are ready for use.")
|
1115 |
with st.form(key='Small Field Preset'):
|
1116 |
+
preset_choice = st.selectbox("Preset", options=['Small Field (Heavy Own)', 'Large Field (Manage Diversity)', 'Hedge Chalk (Manage Leverage)', 'Volatility (Heavy Lineup Edge)', 'Reduce Volatility (Manage Own)'], index=0)
|
1117 |
lineup_target = st.number_input("Lineups to produce", value=150, min_value=1, step=1)
|
1118 |
submitted = st.form_submit_button("Submit")
|
1119 |
if submitted:
|
|
|
1125 |
parsed_frame = volatility_preset(st.session_state['working_frame'], lineup_target, excluded_cols)
|
1126 |
elif preset_choice == 'Hedge Chalk (Manage Leverage)':
|
1127 |
parsed_frame = hedging_preset(st.session_state['working_frame'], lineup_target, st.session_state['projections_df'])
|
1128 |
+
elif preset_choice == 'Reduce Volatility (Manage Own)':
|
1129 |
+
parsed_frame = reduce_volatility_preset(st.session_state['working_frame'], lineup_target, excluded_cols)
|
1130 |
st.session_state['working_frame'] = parsed_frame.reset_index(drop=True)
|
1131 |
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
|
1132 |
|
global_func/reduce_volatility_preset.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
def volatility_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols: list):
|
5 |
+
excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Diversity']
|
6 |
+
player_columns = [col for col in portfolio.columns if col not in excluded_cols]
|
7 |
+
|
8 |
+
for slack_var in range(1, 20):
|
9 |
+
concat_portfolio = pd.DataFrame(columns=portfolio.columns)
|
10 |
+
|
11 |
+
for team in portfolio['Stack'].unique():
|
12 |
+
rows_to_drop = []
|
13 |
+
working_portfolio = portfolio.copy()
|
14 |
+
working_portfolio = working_portfolio[working_portfolio['Stack'] == team].sort_values(by='Weighted Own', ascending = False)
|
15 |
+
working_portfolio = working_portfolio.reset_index(drop=True)
|
16 |
+
curr_own_type_max = working_portfolio.loc[0, 'Diversity'] + (slack_var / 20 * working_portfolio.loc[0, 'Diversity'])
|
17 |
+
|
18 |
+
for i in range(1, len(working_portfolio)):
|
19 |
+
if working_portfolio.loc[i, 'Diversity'] < curr_own_type_max:
|
20 |
+
rows_to_drop.append(i)
|
21 |
+
else:
|
22 |
+
curr_own_type_max = working_portfolio.loc[i, 'Diversity'] + (slack_var / 20 * working_portfolio.loc[i, 'Diversity'])
|
23 |
+
|
24 |
+
working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
|
25 |
+
concat_portfolio = pd.concat([concat_portfolio, working_portfolio])
|
26 |
+
|
27 |
+
if len(concat_portfolio) >= lineup_target:
|
28 |
+
return concat_portfolio.sort_values(by='Weighted Own', ascending=False).head(lineup_target)
|
29 |
+
|
30 |
+
return concat_portfolio.sort_values(by='Weighted Own', ascending=False)
|