Merge branch 'main' of https://huggingface.co/spaces/Multichem-PD/DFS_Portfolio_Manager
Browse files
app.py
CHANGED
@@ -162,7 +162,20 @@ with tab1:
|
|
162 |
st.write('replaced salary symbols')
|
163 |
except:
|
164 |
pass
|
|
|
|
|
|
|
|
|
|
|
165 |
projections['salary'] = projections['salary'].dropna().astype(int)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
projections = projections.apply(lambda x: x.replace(player_wrong_names_mlb, player_right_names_mlb))
|
167 |
st.dataframe(projections.head(10))
|
168 |
|
@@ -250,7 +263,7 @@ with tab1:
|
|
250 |
projections['player_names'] = projections['player_names'].map(lambda x: projections_match_dict.get(x, x))
|
251 |
st.session_state['projections_df'] = projections
|
252 |
|
253 |
-
if
|
254 |
team_dict = dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team']))
|
255 |
st.session_state['portfolio']['Stack'] = st.session_state['portfolio'].apply(
|
256 |
lambda row: Counter(
|
@@ -825,17 +838,30 @@ with tab2:
|
|
825 |
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
|
826 |
}
|
827 |
elif type_var == 'Showdown':
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
839 |
elif site_var == 'Fanduel':
|
840 |
st.session_state['map_dict'] = {
|
841 |
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
|
|
|
162 |
st.write('replaced salary symbols')
|
163 |
except:
|
164 |
pass
|
165 |
+
try:
|
166 |
+
projections['ownership'] = projections['ownership'].str.replace('%', '').str.replace(' ', '')
|
167 |
+
st.write('replaced ownership symbols')
|
168 |
+
except:
|
169 |
+
pass
|
170 |
projections['salary'] = projections['salary'].dropna().astype(int)
|
171 |
+
projections['ownership'] = projections['ownership'].astype(float)
|
172 |
+
if type_var == 'Showdown':
|
173 |
+
if projections['captain ownership'].isna().all():
|
174 |
+
projections['CPT_Own_raw'] = (projections['ownership'] / 2) * ((100 - (100-projections['ownership']))/100)
|
175 |
+
cpt_own_var = 100 / projections['CPT_Own_raw'].sum()
|
176 |
+
projections['captain ownership'] = projections['CPT_Own_raw'] * cpt_own_var
|
177 |
+
projections = projections.drop(columns='CPT_Own_raw', axis=1)
|
178 |
+
|
179 |
projections = projections.apply(lambda x: x.replace(player_wrong_names_mlb, player_right_names_mlb))
|
180 |
st.dataframe(projections.head(10))
|
181 |
|
|
|
263 |
projections['player_names'] = projections['player_names'].map(lambda x: projections_match_dict.get(x, x))
|
264 |
st.session_state['projections_df'] = projections
|
265 |
|
266 |
+
if sport_var in stacking_sports:
|
267 |
team_dict = dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team']))
|
268 |
st.session_state['portfolio']['Stack'] = st.session_state['portfolio'].apply(
|
269 |
lambda row: Counter(
|
|
|
838 |
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
|
839 |
}
|
840 |
elif type_var == 'Showdown':
|
841 |
+
if sport_var == 'GOLF':
|
842 |
+
st.session_state['map_dict'] = {
|
843 |
+
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
|
844 |
+
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
|
845 |
+
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
846 |
+
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
|
847 |
+
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
|
848 |
+
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
|
849 |
+
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
850 |
+
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
|
851 |
+
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership']))
|
852 |
+
}
|
853 |
+
if sport_var != 'GOLF':
|
854 |
+
st.session_state['map_dict'] = {
|
855 |
+
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
|
856 |
+
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
|
857 |
+
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
858 |
+
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
|
859 |
+
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
|
860 |
+
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
|
861 |
+
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'] * 1.5)),
|
862 |
+
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
|
863 |
+
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
|
864 |
+
}
|
865 |
elif site_var == 'Fanduel':
|
866 |
st.session_state['map_dict'] = {
|
867 |
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
|