James McCool commited on
Commit
2a7d830
·
1 Parent(s): 161be26

Update volatility_preset function to use 'Similarity Score' for row filtering instead of 'median'. This change improves the accuracy of lineup adjustments by ensuring the correct comparison for ownership type maximums.

Browse files
Files changed (1) hide show
  1. global_func/volatility_preset.py +3 -3
global_func/volatility_preset.py CHANGED
@@ -13,13 +13,13 @@ def volatility_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols:
13
  working_portfolio = portfolio.copy()
14
  working_portfolio = working_portfolio[working_portfolio['Stack'] == team].sort_values(by='Lineup Edge', ascending = False)
15
  working_portfolio = working_portfolio.reset_index(drop=True)
16
- curr_own_type_max = working_portfolio.loc[0, 'median'] + (slack_var / 20 * working_portfolio.loc[0, 'median'])
17
 
18
  for i in range(1, len(working_portfolio)):
19
- if working_portfolio.loc[i, 'median'] > curr_own_type_max:
20
  rows_to_drop.append(i)
21
  else:
22
- curr_own_type_max = working_portfolio.loc[i, 'median'] + (slack_var / 20 * working_portfolio.loc[i, 'median'])
23
 
24
  working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
25
  concat_portfolio = pd.concat([concat_portfolio, working_portfolio])
 
13
  working_portfolio = portfolio.copy()
14
  working_portfolio = working_portfolio[working_portfolio['Stack'] == team].sort_values(by='Lineup Edge', ascending = False)
15
  working_portfolio = working_portfolio.reset_index(drop=True)
16
+ curr_own_type_max = working_portfolio.loc[0, 'Similarity Score'] + (slack_var / 20 * working_portfolio.loc[0, 'Similarity Score'])
17
 
18
  for i in range(1, len(working_portfolio)):
19
+ if working_portfolio.loc[i, 'Similarity Score'] < curr_own_type_max:
20
  rows_to_drop.append(i)
21
  else:
22
+ curr_own_type_max = working_portfolio.loc[i, 'Similarity Score'] + (slack_var / 20 * working_portfolio.loc[i, 'Similarity Score'])
23
 
24
  working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
25
  concat_portfolio = pd.concat([concat_portfolio, working_portfolio])