James McCool commited on
Commit
2bbbfdd
·
1 Parent(s): 33beedc

Refactor hedging_preset.py to use a configurable list size for top owned players. This change enhances flexibility in player selection and adjusts lineup target calculations accordingly.

Browse files
Files changed (1) hide show
  1. global_func/hedging_preset.py +4 -3
global_func/hedging_preset.py CHANGED
@@ -6,10 +6,11 @@ from global_func.large_field_preset import large_field_preset
6
  def hedging_preset(portfolio: pd.DataFrame, lineup_target: int, projections_file: pd.DataFrame):
7
 
8
  excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Similarity Score']
 
9
 
10
  check_own_df = projections_file.copy()
11
  check_own_df = check_own_df.sort_values(by='ownership', ascending=False)
12
- top_owned = check_own_df['player_names'].head(3).tolist()
13
 
14
  concat_portfolio = pd.DataFrame(columns=portfolio.columns)
15
 
@@ -29,8 +30,8 @@ def hedging_preset(portfolio: pd.DataFrame, lineup_target: int, projections_file
29
  removed_df = working_df[remove_mask]
30
  locked_df = working_df[lock_mask]
31
 
32
- removed_lineups = small_field_preset(removed_df, math.ceil(lineup_target / 2), excluded_cols)
33
- locked_lineups = large_field_preset(locked_df, math.ceil(lineup_target / 2), excluded_cols)
34
 
35
  concat_portfolio = pd.concat([concat_portfolio, removed_lineups, locked_lineups])
36
 
 
6
  def hedging_preset(portfolio: pd.DataFrame, lineup_target: int, projections_file: pd.DataFrame):
7
 
8
  excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Similarity Score']
9
+ list_size = 3
10
 
11
  check_own_df = projections_file.copy()
12
  check_own_df = check_own_df.sort_values(by='ownership', ascending=False)
13
+ top_owned = check_own_df['player_names'].head(list_size).tolist()
14
 
15
  concat_portfolio = pd.DataFrame(columns=portfolio.columns)
16
 
 
30
  removed_df = working_df[remove_mask]
31
  locked_df = working_df[lock_mask]
32
 
33
+ removed_lineups = small_field_preset(removed_df, math.ceil(lineup_target / (list_size * 2)), excluded_cols)
34
+ locked_lineups = large_field_preset(locked_df, math.ceil(lineup_target / (list_size * 2)), excluded_cols)
35
 
36
  concat_portfolio = pd.concat([concat_portfolio, removed_lineups, locked_lineups])
37