James McCool commited on
Commit
4507308
·
1 Parent(s): a6d3a93

Enhance app functionality by adding calculations for the highest owned teams and pitchers based on projections, improving user insights into team ownership trends. Refactor small_field_preset function to ensure consistent DataFrame structure by sorting working portfolio by median before returning results.

Browse files
Files changed (2) hide show
  1. app.py +2 -0
  2. global_func/small_field_preset.py +2 -2
app.py CHANGED
@@ -940,6 +940,8 @@ with tab2:
940
  axis=1
941
  )
942
  st.session_state['working_frame'] = predict_dupes(st.session_state['working_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var)
 
 
943
  if 'info_columns_dict' not in st.session_state:
944
  st.session_state['info_columns_dict'] = {
945
  'Dupes': st.session_state['working_frame']['Dupes'],
 
940
  axis=1
941
  )
942
  st.session_state['working_frame'] = predict_dupes(st.session_state['working_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var)
943
+ st.session_state['highest_owned_teams'] = st.session_state['projections_df'][~st.session_state['projections_df']['position'].isin(['P', 'SP'])].groupby('team')['ownership'].sum().sort_values(ascending=False).head(3).index.tolist()
944
+ st.session_state['highest_owned_pitchers'] = st.session_state['projections_df'][st.session_state['projections_df']['position'].isin(['P', 'SP'])]['player_names'].sort_values(by='ownership', ascending=False).head(3).tolist()
945
  if 'info_columns_dict' not in st.session_state:
946
  st.session_state['info_columns_dict'] = {
947
  'Dupes': st.session_state['working_frame']['Dupes'],
global_func/small_field_preset.py CHANGED
@@ -17,6 +17,6 @@ def small_field_preset(portfolio: pd.DataFrame, lineup_target: int):
17
 
18
  working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
19
  if len(working_portfolio) >= lineup_target:
20
- return working_portfolio.sort_values(by='Median', ascending=False).head(lineup_target)
21
 
22
- return working_portfolio.sort_values(by='Median', ascending=False)
 
17
 
18
  working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
19
  if len(working_portfolio) >= lineup_target:
20
+ return working_portfolio.sort_values(by='median', ascending=False).head(lineup_target)
21
 
22
+ return working_portfolio.sort_values(by='median', ascending=False)