James McCool
commited on
Commit
·
471e1a6
1
Parent(s):
3cc15e1
Refactor large_field_preset function to improve team-based filtering by introducing median and finish percentile rankings for enhanced sorting accuracy. Clean up temporary columns after processing to maintain DataFrame integrity.
Browse files
global_func/large_field_preset.py
CHANGED
@@ -7,7 +7,11 @@ def large_field_preset(portfolio: pd.DataFrame, lineup_target: int):
|
|
7 |
|
8 |
for team in portfolio['Stack'].unique():
|
9 |
rows_to_drop = []
|
10 |
-
working_portfolio = portfolio
|
|
|
|
|
|
|
|
|
11 |
working_portfolio = working_portfolio[working_portfolio['Lineup Edge'] > 0]
|
12 |
working_portfolio = working_portfolio.reset_index(drop=True)
|
13 |
curr_own_type_max = working_portfolio.loc[0, 'Own'] + (slack_var / 20 * working_portfolio.loc[0, 'Own'])
|
@@ -19,6 +23,7 @@ def large_field_preset(portfolio: pd.DataFrame, lineup_target: int):
|
|
19 |
curr_own_type_max = working_portfolio.loc[i, 'Own'] + (slack_var / 20 * working_portfolio.loc[i, 'Own'])
|
20 |
|
21 |
working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
|
|
|
22 |
concat_portfolio = pd.concat([concat_portfolio, working_portfolio])
|
23 |
if len(concat_portfolio) >= lineup_target:
|
24 |
return concat_portfolio.sort_values(by='Finish_percentile', ascending=True).head(lineup_target)
|
|
|
7 |
|
8 |
for team in portfolio['Stack'].unique():
|
9 |
rows_to_drop = []
|
10 |
+
working_portfolio = portfolio.copy()
|
11 |
+
working_portfolio['median_rank'] = working_portfolio['median_rank'].rank(method='first')
|
12 |
+
working_portfolio['finish_percentile_rank'] = working_portfolio['Finish_percentile'].rank(method='first')
|
13 |
+
working_portfolio['rank_agg'] = (working_portfolio['median_rank'] + working_portfolio['finish_percentile_rank']) / 2
|
14 |
+
working_portfolio = working_portfolio[working_portfolio['Stack'] == team].sort_values(by='rank_agg', ascending = True)
|
15 |
working_portfolio = working_portfolio[working_portfolio['Lineup Edge'] > 0]
|
16 |
working_portfolio = working_portfolio.reset_index(drop=True)
|
17 |
curr_own_type_max = working_portfolio.loc[0, 'Own'] + (slack_var / 20 * working_portfolio.loc[0, 'Own'])
|
|
|
23 |
curr_own_type_max = working_portfolio.loc[i, 'Own'] + (slack_var / 20 * working_portfolio.loc[i, 'Own'])
|
24 |
|
25 |
working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
|
26 |
+
working_portfolio = working_portfolio.drop(columns=['median_rank', 'finish_percentile_rank', 'rank_agg'])
|
27 |
concat_portfolio = pd.concat([concat_portfolio, working_portfolio])
|
28 |
if len(concat_portfolio) >= lineup_target:
|
29 |
return concat_portfolio.sort_values(by='Finish_percentile', ascending=True).head(lineup_target)
|