James McCool
commited on
Commit
·
587326c
1
Parent(s):
beef2ec
Refactor player removal and portfolio filtering logic in distribute_preset.py to improve accuracy in lineup generation. This update introduces a mechanism to continuously remove high-exposure players and ensures that the final portfolio meets the lineup target while maintaining performance metrics.
Browse files- global_func/distribute_preset.py +69 -64
global_func/distribute_preset.py
CHANGED
@@ -5,76 +5,81 @@ def distribute_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols:
|
|
5 |
|
6 |
excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Similarity Score']
|
7 |
player_columns = [col for col in portfolio.columns if col not in excluded_cols]
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
for
|
12 |
-
|
|
|
|
|
13 |
working_portfolio = portfolio.copy()
|
14 |
-
working_portfolio = working_portfolio[working_portfolio['Stack'] == team].sort_values(by='median', ascending = False)
|
15 |
-
working_portfolio = working_portfolio.reset_index(drop=True)
|
16 |
-
curr_own_type_max = working_portfolio.loc[0, 'Similarity Score'] + (slack_var / 20 * working_portfolio.loc[0, 'Similarity Score'])
|
17 |
-
|
18 |
-
for i in range(1, len(working_portfolio)):
|
19 |
-
if working_portfolio.loc[i, 'Similarity Score'] > curr_own_type_max:
|
20 |
-
rows_to_drop.append(i)
|
21 |
-
else:
|
22 |
-
curr_own_type_max = working_portfolio.loc[i, 'Similarity Score'] + (slack_var / 20 * working_portfolio.loc[i, 'Similarity Score'])
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
'Player': player,
|
46 |
-
'Lineup Count': player_mask.sum(),
|
47 |
-
'Exposure': player_mask.sum() / len(init_portfolio)
|
48 |
-
})
|
49 |
-
|
50 |
-
player_summary = pd.DataFrame(player_stats)
|
51 |
-
print(player_summary.sort_values('Lineup Count', ascending=False).head(10))
|
52 |
-
player_remove_list = player_summary.sort_values('Lineup Count', ascending=False).head(5)['Player'].tolist()
|
53 |
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
)
|
63 |
-
working_portfolio = working_portfolio[remove_mask]
|
64 |
-
print(working_portfolio.head(10))
|
65 |
-
working_portfolio = working_portfolio.sort_values(by='median', ascending=False).reset_index(drop=True)
|
66 |
-
curr_own_type_max = working_portfolio.loc[0, 'Similarity Score'] + (slack_var / 20 * working_portfolio.loc[0, 'Similarity Score'])
|
67 |
-
|
68 |
-
for i in range(1, len(working_portfolio)):
|
69 |
-
if working_portfolio.loc[i, 'Similarity Score'] > curr_own_type_max:
|
70 |
-
rows_to_drop.append(i)
|
71 |
-
else:
|
72 |
-
curr_own_type_max = working_portfolio.loc[i, 'Similarity Score'] + (slack_var / 20 * working_portfolio.loc[i, 'Similarity Score'])
|
73 |
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
return concat_portfolio.sort_values(by='median', ascending=False)
|
|
|
5 |
|
6 |
excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Similarity Score']
|
7 |
player_columns = [col for col in portfolio.columns if col not in excluded_cols]
|
8 |
+
player_remove_list = []
|
9 |
+
|
10 |
+
while True: # Continue until no more players need to be removed
|
11 |
+
for slack_var in range(1, 20):
|
12 |
+
concat_portfolio = pd.DataFrame(columns=portfolio.columns)
|
13 |
+
|
14 |
+
# Start with the original portfolio, removing players from player_remove_list
|
15 |
working_portfolio = portfolio.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# Remove all players in player_remove_list at once
|
18 |
+
if player_remove_list:
|
19 |
+
remove_mask = working_portfolio[player_columns].apply(
|
20 |
+
lambda row: not any(player in list(row) for player in player_remove_list), axis=1
|
21 |
+
)
|
22 |
+
working_portfolio = working_portfolio[remove_mask]
|
23 |
+
|
24 |
+
if len(working_portfolio) == 0:
|
25 |
+
# If no data left after removing players, return what we have
|
26 |
+
return concat_portfolio.sort_values(by='median', ascending=False)
|
27 |
+
|
28 |
+
# Apply similarity score filtering by team
|
29 |
+
for team in working_portfolio['Stack'].unique():
|
30 |
+
rows_to_drop = []
|
31 |
+
team_portfolio = working_portfolio[working_portfolio['Stack'] == team].sort_values(by='median', ascending=False)
|
32 |
+
team_portfolio = team_portfolio.reset_index(drop=True)
|
33 |
+
|
34 |
+
if len(team_portfolio) == 0:
|
35 |
+
continue
|
36 |
+
|
37 |
+
curr_own_type_max = team_portfolio.loc[0, 'Similarity Score'] + (slack_var / 20 * team_portfolio.loc[0, 'Similarity Score'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
for i in range(1, len(team_portfolio)):
|
40 |
+
if team_portfolio.loc[i, 'Similarity Score'] > curr_own_type_max:
|
41 |
+
rows_to_drop.append(i)
|
42 |
+
else:
|
43 |
+
curr_own_type_max = team_portfolio.loc[i, 'Similarity Score'] + (slack_var / 20 * team_portfolio.loc[i, 'Similarity Score'])
|
44 |
+
|
45 |
+
team_portfolio = team_portfolio.drop(rows_to_drop).reset_index(drop=True)
|
46 |
+
concat_portfolio = pd.concat([concat_portfolio, team_portfolio.head(math.ceil(lineup_target / 5))])
|
47 |
|
48 |
+
if len(concat_portfolio) >= lineup_target:
|
49 |
+
concat_portfolio = concat_portfolio.sort_values(by='median', ascending=False).head(lineup_target)
|
50 |
+
break
|
51 |
+
|
52 |
+
# Calculate player exposures from the current concat_portfolio
|
53 |
+
player_list = set()
|
54 |
+
player_stats = []
|
55 |
+
for cols in concat_portfolio.columns:
|
56 |
+
if cols not in excluded_cols:
|
57 |
+
player_list.update(concat_portfolio[cols].unique())
|
58 |
+
|
59 |
+
for player in player_list:
|
60 |
+
player_cols = [col for col in concat_portfolio.columns if col not in excluded_cols]
|
61 |
+
player_mask = concat_portfolio[player_cols].apply(
|
62 |
+
lambda row: player in list(row), axis=1
|
63 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
if player_mask.any():
|
66 |
+
player_stats.append({
|
67 |
+
'Player': player,
|
68 |
+
'Lineup Count': player_mask.sum(),
|
69 |
+
'Exposure': player_mask.sum() / len(concat_portfolio)
|
70 |
+
})
|
71 |
|
72 |
+
player_summary = pd.DataFrame(player_stats)
|
73 |
+
print(player_summary.sort_values('Lineup Count', ascending=False).head(10))
|
74 |
+
|
75 |
+
# Find players with exposure > 0.60
|
76 |
+
high_exposure_players = player_summary[player_summary['Exposure'] > 0.60]['Player'].tolist()
|
77 |
+
|
78 |
+
# Add new high-exposure players to the remove list
|
79 |
+
player_remove_list.extend(high_exposure_players)
|
80 |
+
|
81 |
+
# If no new players to remove and we have enough lineups, we're done
|
82 |
+
if len(high_exposure_players) == 0 and len(concat_portfolio) >= lineup_target:
|
83 |
+
break
|
84 |
|
85 |
return concat_portfolio.sort_values(by='median', ascending=False)
|