adjusted own scaling
Browse files
global_func/predict_dupes.py
CHANGED
@@ -579,8 +579,8 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
|
|
579 |
lambda row: sum(1 for player in row if player in top_x_ownership_keys), axis=1
|
580 |
)
|
581 |
|
582 |
-
portfolio['dupes_calc'] = (portfolio['avg_own_rank'] / 1000) * (Contest_Size / 100) + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((49700 - portfolio['salary']) / 100)
|
583 |
-
portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000))) * portfolio['top_x_presence']
|
584 |
# Round and handle negative values
|
585 |
portfolio['Dupes'] = np.where(
|
586 |
np.round(portfolio['dupes_calc'], 0) <= 0,
|
|
|
579 |
lambda row: sum(1 for player in row if player in top_x_ownership_keys), axis=1
|
580 |
)
|
581 |
|
582 |
+
portfolio['dupes_calc'] = (portfolio['avg_own_rank'] / 1000) * (Contest_Size / 100) + ((portfolio['salary'] - (50000 - (portfolio['Own'] * 100))) / 100) - ((49700 - portfolio['salary']) / 100)
|
583 |
+
portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * ((portfolio['Own'] * 100) / (100 + (Contest_Size / 1000))) * portfolio['top_x_presence']
|
584 |
# Round and handle negative values
|
585 |
portfolio['Dupes'] = np.where(
|
586 |
np.round(portfolio['dupes_calc'], 0) <= 0,
|