James McCool
commited on
Commit
·
69418e8
1
Parent(s):
690e673
Update 'own_rank_percentile' calculation in predict_dupes.py to use 'Own' column instead of duplicate count columns. This change enhances the accuracy of the duplicate prediction logic by directly reflecting player ownership rankings in the calculations.
Browse files
global_func/predict_dupes.py
CHANGED
@@ -326,7 +326,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
|
|
326 |
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
|
327 |
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
|
328 |
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
|
329 |
-
portfolio['own_rank_percentile'] = portfolio[
|
330 |
|
331 |
# Calculate dupes formula
|
332 |
portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * (portfolio['Own'] / 100) * Contest_Size + ((portfolio['salary'] - (60000 - portfolio['Own'])) / 100) - ((60000 - portfolio['salary']) / 100)
|
@@ -355,7 +355,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
|
|
355 |
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
|
356 |
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
|
357 |
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
|
358 |
-
portfolio['own_rank_percentile'] = portfolio[
|
359 |
|
360 |
portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (60000 - portfolio['Own'])) / 100) - ((60000 - portfolio['salary']) / 100)
|
361 |
portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000)))
|
@@ -430,7 +430,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
|
|
430 |
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
|
431 |
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
|
432 |
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
|
433 |
-
portfolio['own_rank_percentile'] = portfolio[
|
434 |
|
435 |
# Calculate dupes formula
|
436 |
portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
|
@@ -478,7 +478,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
|
|
478 |
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
|
479 |
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
|
480 |
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
|
481 |
-
portfolio['own_rank_percentile'] = portfolio[
|
482 |
|
483 |
# Calculate dupes formula
|
484 |
portfolio['dupes_calc'] = ((portfolio['own_product'] * 10) * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 50) - ((50000 - portfolio['salary']) / 50)
|
@@ -528,7 +528,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
|
|
528 |
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
|
529 |
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
|
530 |
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
|
531 |
-
portfolio['own_rank_percentile'] = portfolio[
|
532 |
|
533 |
# Calculate dupes formula
|
534 |
portfolio['dupes_calc'] = ((portfolio['own_product'] * 10) * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 50) - ((50000 - portfolio['salary']) / 50)
|
@@ -556,7 +556,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
|
|
556 |
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
|
557 |
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
|
558 |
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
|
559 |
-
portfolio['own_rank_percentile'] = portfolio[
|
560 |
|
561 |
portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
|
562 |
portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000)))
|
|
|
326 |
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
|
327 |
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
|
328 |
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
|
329 |
+
portfolio['own_rank_percentile'] = portfolio['Own'].rank(pct=True)
|
330 |
|
331 |
# Calculate dupes formula
|
332 |
portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * (portfolio['Own'] / 100) * Contest_Size + ((portfolio['salary'] - (60000 - portfolio['Own'])) / 100) - ((60000 - portfolio['salary']) / 100)
|
|
|
355 |
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
|
356 |
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
|
357 |
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
|
358 |
+
portfolio['own_rank_percentile'] = portfolio['Own'].rank(pct=True)
|
359 |
|
360 |
portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (60000 - portfolio['Own'])) / 100) - ((60000 - portfolio['salary']) / 100)
|
361 |
portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000)))
|
|
|
430 |
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
|
431 |
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
|
432 |
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
|
433 |
+
portfolio['own_rank_percentile'] = portfolio['Own'].rank(pct=True)
|
434 |
|
435 |
# Calculate dupes formula
|
436 |
portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
|
|
|
478 |
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
|
479 |
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
|
480 |
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
|
481 |
+
portfolio['own_rank_percentile'] = portfolio['Own'].rank(pct=True)
|
482 |
|
483 |
# Calculate dupes formula
|
484 |
portfolio['dupes_calc'] = ((portfolio['own_product'] * 10) * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 50) - ((50000 - portfolio['salary']) / 50)
|
|
|
528 |
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
|
529 |
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
|
530 |
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
|
531 |
+
portfolio['own_rank_percentile'] = portfolio['Own'].rank(pct=True)
|
532 |
|
533 |
# Calculate dupes formula
|
534 |
portfolio['dupes_calc'] = ((portfolio['own_product'] * 10) * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 50) - ((50000 - portfolio['salary']) / 50)
|
|
|
556 |
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
|
557 |
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
|
558 |
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
|
559 |
+
portfolio['own_rank_percentile'] = portfolio['Own'].rank(pct=True)
|
560 |
|
561 |
portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
|
562 |
portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000)))
|