James McCool commited on
Commit
69418e8
·
1 Parent(s): 690e673

Update 'own_rank_percentile' calculation in predict_dupes.py to use 'Own' column instead of duplicate count columns. This change enhances the accuracy of the duplicate prediction logic by directly reflecting player ownership rankings in the calculations.

Browse files
Files changed (1) hide show
  1. global_func/predict_dupes.py +6 -6
global_func/predict_dupes.py CHANGED
@@ -326,7 +326,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
326
  portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
327
  portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
328
  portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
329
- portfolio['own_rank_percentile'] = portfolio[dup_count_columns].rank(pct=True)
330
 
331
  # Calculate dupes formula
332
  portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * (portfolio['Own'] / 100) * Contest_Size + ((portfolio['salary'] - (60000 - portfolio['Own'])) / 100) - ((60000 - portfolio['salary']) / 100)
@@ -355,7 +355,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
355
  portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
356
  portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
357
  portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
358
- portfolio['own_rank_percentile'] = portfolio[dup_count_columns].rank(pct=True)
359
 
360
  portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (60000 - portfolio['Own'])) / 100) - ((60000 - portfolio['salary']) / 100)
361
  portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000)))
@@ -430,7 +430,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
430
  portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
431
  portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
432
  portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
433
- portfolio['own_rank_percentile'] = portfolio[dup_count_columns].rank(pct=True)
434
 
435
  # Calculate dupes formula
436
  portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
@@ -478,7 +478,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
478
  portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
479
  portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
480
  portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
481
- portfolio['own_rank_percentile'] = portfolio[dup_count_columns].rank(pct=True)
482
 
483
  # Calculate dupes formula
484
  portfolio['dupes_calc'] = ((portfolio['own_product'] * 10) * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 50) - ((50000 - portfolio['salary']) / 50)
@@ -528,7 +528,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
528
  portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
529
  portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
530
  portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
531
- portfolio['own_rank_percentile'] = portfolio[dup_count_columns].rank(pct=True)
532
 
533
  # Calculate dupes formula
534
  portfolio['dupes_calc'] = ((portfolio['own_product'] * 10) * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 50) - ((50000 - portfolio['salary']) / 50)
@@ -556,7 +556,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
556
  portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
557
  portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
558
  portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
559
- portfolio['own_rank_percentile'] = portfolio[dup_count_columns].rank(pct=True)
560
 
561
  portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
562
  portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000)))
 
326
  portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
327
  portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
328
  portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
329
+ portfolio['own_rank_percentile'] = portfolio['Own'].rank(pct=True)
330
 
331
  # Calculate dupes formula
332
  portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * (portfolio['Own'] / 100) * Contest_Size + ((portfolio['salary'] - (60000 - portfolio['Own'])) / 100) - ((60000 - portfolio['salary']) / 100)
 
355
  portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
356
  portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
357
  portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
358
+ portfolio['own_rank_percentile'] = portfolio['Own'].rank(pct=True)
359
 
360
  portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (60000 - portfolio['Own'])) / 100) - ((60000 - portfolio['salary']) / 100)
361
  portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000)))
 
430
  portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
431
  portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
432
  portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
433
+ portfolio['own_rank_percentile'] = portfolio['Own'].rank(pct=True)
434
 
435
  # Calculate dupes formula
436
  portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
 
478
  portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
479
  portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
480
  portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
481
+ portfolio['own_rank_percentile'] = portfolio['Own'].rank(pct=True)
482
 
483
  # Calculate dupes formula
484
  portfolio['dupes_calc'] = ((portfolio['own_product'] * 10) * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 50) - ((50000 - portfolio['salary']) / 50)
 
528
  portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
529
  portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
530
  portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
531
+ portfolio['own_rank_percentile'] = portfolio['Own'].rank(pct=True)
532
 
533
  # Calculate dupes formula
534
  portfolio['dupes_calc'] = ((portfolio['own_product'] * 10) * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 50) - ((50000 - portfolio['salary']) / 50)
 
556
  portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
557
  portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
558
  portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
559
+ portfolio['own_rank_percentile'] = portfolio['Own'].rank(pct=True)
560
 
561
  portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
562
  portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000)))