James McCool
commited on
Commit
·
91ab4fb
1
Parent(s):
039bb05
Enhance trimming variable options in app.py and update portfolio trimming logic in trim_portfolio.py to accommodate 'Similarity Score'. This change allows for more flexible data handling and improves the trimming process based on the selected variable.
Browse files- app.py +1 -1
- global_func/trim_portfolio.py +16 -8
app.py
CHANGED
@@ -1079,7 +1079,7 @@ with tab2:
|
|
1079 |
with perf_var:
|
1080 |
performance_type = st.selectbox("Sorting variable", ['median', 'Finish_percentile'], key='sort_var')
|
1081 |
with own_var:
|
1082 |
-
own_type = st.selectbox("Trimming variable", ['Own', 'Geomean', 'Weighted Own'], key='trim_var')
|
1083 |
|
1084 |
trim_slack_var = st.number_input("Trim slack (percentile addition to trimming variable ceiling)", value=0.0, min_value=0.0, max_value=1.0, step=0.1, key='trim_slack')
|
1085 |
|
|
|
1079 |
with perf_var:
|
1080 |
performance_type = st.selectbox("Sorting variable", ['median', 'Finish_percentile'], key='sort_var')
|
1081 |
with own_var:
|
1082 |
+
own_type = st.selectbox("Trimming variable", ['Own', 'Geomean', 'Weighted Own', 'Similarity Score'], key='trim_var')
|
1083 |
|
1084 |
trim_slack_var = st.number_input("Trim slack (percentile addition to trimming variable ceiling)", value=0.0, min_value=0.0, max_value=1.0, step=0.1, key='trim_slack')
|
1085 |
|
global_func/trim_portfolio.py
CHANGED
@@ -9,14 +9,22 @@ def trim_portfolio(portfolio: pd.DataFrame, trim_slack: float, performance_type:
|
|
9 |
curr_own_type_max = working_portfolio.loc[0, own_type] + (trim_slack * working_portfolio.loc[0, own_type])
|
10 |
|
11 |
for i in range(1, len(working_portfolio)):
|
12 |
-
if
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
18 |
else:
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
21 |
working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
|
22 |
return working_portfolio
|
|
|
9 |
curr_own_type_max = working_portfolio.loc[0, own_type] + (trim_slack * working_portfolio.loc[0, own_type])
|
10 |
|
11 |
for i in range(1, len(working_portfolio)):
|
12 |
+
if own_type == 'Similarity Score':
|
13 |
+
if working_portfolio.loc[i, own_type] > curr_own_type_max and \
|
14 |
+
working_portfolio.loc[i, performance_type] > performance_threshold_low and \
|
15 |
+
working_portfolio.loc[i, performance_type] <= performance_threshold_high and \
|
16 |
+
working_portfolio.loc[i, own_type] > own_threshold_low and \
|
17 |
+
working_portfolio.loc[i, own_type] <= own_threshold_high:
|
18 |
+
rows_to_drop.append(i)
|
19 |
+
else:
|
20 |
+
curr_own_type_max = working_portfolio.loc[i, own_type] + (trim_slack * working_portfolio.loc[i, own_type])
|
21 |
else:
|
22 |
+
if working_portfolio.loc[i, own_type] > curr_own_type_max and \
|
23 |
+
working_portfolio.loc[i, performance_type] > performance_threshold_low and \
|
24 |
+
working_portfolio.loc[i, performance_type] <= performance_threshold_high and \
|
25 |
+
working_portfolio.loc[i, own_type] > own_threshold_low and \
|
26 |
+
working_portfolio.loc[i, own_type] <= own_threshold_high:
|
27 |
+
rows_to_drop.append(i)
|
28 |
+
|
29 |
working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
|
30 |
return working_portfolio
|