James McCool
commited on
Commit
·
9a6e753
1
Parent(s):
fd54d3c
Update salary input limits in app.py: increase the maximum acceptable salary from 60,000 to 100,000 to accommodate a wider range of salary options for users. Adjust conditional checks in predict_dupes.py to use 'elif' for improved clarity in type_var evaluations.
Browse files- app.py +1 -1
- global_func/predict_dupes.py +2 -2
app.py
CHANGED
@@ -886,7 +886,7 @@ with tab2:
|
|
886 |
with st.form(key='macro_filter_form'):
|
887 |
max_dupes = st.number_input("Max acceptable dupes?", value=1000, min_value=1, step=1)
|
888 |
min_salary = st.number_input("Min acceptable salary?", value=1000, min_value=1000, step=100)
|
889 |
-
max_salary = st.number_input("Max acceptable salary?", value=
|
890 |
max_finish_percentile = st.number_input("Max acceptable finish percentile?", value=.50, min_value=0.005, step=.001)
|
891 |
min_lineup_edge = st.number_input("Min acceptable Lineup Edge?", value=-.5, min_value=-1.00, step=.001)
|
892 |
if stack_dict is not None:
|
|
|
886 |
with st.form(key='macro_filter_form'):
|
887 |
max_dupes = st.number_input("Max acceptable dupes?", value=1000, min_value=1, step=1)
|
888 |
min_salary = st.number_input("Min acceptable salary?", value=1000, min_value=1000, step=100)
|
889 |
+
max_salary = st.number_input("Max acceptable salary?", value=100000, min_value=1000, step=100)
|
890 |
max_finish_percentile = st.number_input("Max acceptable finish percentile?", value=.50, min_value=0.005, step=.001)
|
891 |
min_lineup_edge = st.number_input("Min acceptable Lineup Edge?", value=-.5, min_value=-1.00, step=.001)
|
892 |
if stack_dict is not None:
|
global_func/predict_dupes.py
CHANGED
@@ -90,7 +90,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
|
|
90 |
0,
|
91 |
np.round(portfolio['dupes_calc'], 0) - 1
|
92 |
)
|
93 |
-
|
94 |
num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']])
|
95 |
dup_count_columns = [f'player_{i}_percent_rank' for i in range(1, num_players + 1)]
|
96 |
own_columns = [f'player_{i}_own' for i in range(1, num_players + 1)]
|
@@ -157,7 +157,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
|
|
157 |
0,
|
158 |
np.round(portfolio['dupes_calc'], 0) - 1
|
159 |
)
|
160 |
-
|
161 |
if sport_var == 'CS2':
|
162 |
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
|
163 |
own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']
|
|
|
90 |
0,
|
91 |
np.round(portfolio['dupes_calc'], 0) - 1
|
92 |
)
|
93 |
+
elif type_var == 'Classic':
|
94 |
num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']])
|
95 |
dup_count_columns = [f'player_{i}_percent_rank' for i in range(1, num_players + 1)]
|
96 |
own_columns = [f'player_{i}_own' for i in range(1, num_players + 1)]
|
|
|
157 |
0,
|
158 |
np.round(portfolio['dupes_calc'], 0) - 1
|
159 |
)
|
160 |
+
elif type_var == 'Classic':
|
161 |
if sport_var == 'CS2':
|
162 |
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
|
163 |
own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']
|