James McCool commited on
Commit
9a6e753
·
1 Parent(s): fd54d3c

Update salary input limits in app.py: increase the maximum acceptable salary from 60,000 to 100,000 to accommodate a wider range of salary options for users. Adjust conditional checks in predict_dupes.py to use 'elif' for improved clarity in type_var evaluations.

Browse files
Files changed (2) hide show
  1. app.py +1 -1
  2. global_func/predict_dupes.py +2 -2
app.py CHANGED
@@ -886,7 +886,7 @@ with tab2:
886
  with st.form(key='macro_filter_form'):
887
  max_dupes = st.number_input("Max acceptable dupes?", value=1000, min_value=1, step=1)
888
  min_salary = st.number_input("Min acceptable salary?", value=1000, min_value=1000, step=100)
889
- max_salary = st.number_input("Max acceptable salary?", value=60000, min_value=1000, step=100)
890
  max_finish_percentile = st.number_input("Max acceptable finish percentile?", value=.50, min_value=0.005, step=.001)
891
  min_lineup_edge = st.number_input("Min acceptable Lineup Edge?", value=-.5, min_value=-1.00, step=.001)
892
  if stack_dict is not None:
 
886
  with st.form(key='macro_filter_form'):
887
  max_dupes = st.number_input("Max acceptable dupes?", value=1000, min_value=1, step=1)
888
  min_salary = st.number_input("Min acceptable salary?", value=1000, min_value=1000, step=100)
889
+ max_salary = st.number_input("Max acceptable salary?", value=100000, min_value=1000, step=100)
890
  max_finish_percentile = st.number_input("Max acceptable finish percentile?", value=.50, min_value=0.005, step=.001)
891
  min_lineup_edge = st.number_input("Min acceptable Lineup Edge?", value=-.5, min_value=-1.00, step=.001)
892
  if stack_dict is not None:
global_func/predict_dupes.py CHANGED
@@ -90,7 +90,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
90
  0,
91
  np.round(portfolio['dupes_calc'], 0) - 1
92
  )
93
- if type_var == 'Classic':
94
  num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']])
95
  dup_count_columns = [f'player_{i}_percent_rank' for i in range(1, num_players + 1)]
96
  own_columns = [f'player_{i}_own' for i in range(1, num_players + 1)]
@@ -157,7 +157,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
157
  0,
158
  np.round(portfolio['dupes_calc'], 0) - 1
159
  )
160
- if type_var == 'Classic':
161
  if sport_var == 'CS2':
162
  dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
163
  own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']
 
90
  0,
91
  np.round(portfolio['dupes_calc'], 0) - 1
92
  )
93
+ elif type_var == 'Classic':
94
  num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']])
95
  dup_count_columns = [f'player_{i}_percent_rank' for i in range(1, num_players + 1)]
96
  own_columns = [f'player_{i}_own' for i in range(1, num_players + 1)]
 
157
  0,
158
  np.round(portfolio['dupes_calc'], 0) - 1
159
  )
160
+ elif type_var == 'Classic':
161
  if sport_var == 'CS2':
162
  dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
163
  own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']