James McCool
commited on
Commit
·
bd90e32
1
Parent(s):
d619fee
Refactor portfolio duplication prediction in predict_dupes.py: enhance the function to accommodate sport-specific logic for CS2, improving ownership calculations and ensuring accurate duplication metrics based on player ownership and salary. Update app.py to pass sport_var to predict_dupes for better context in calculations.
Browse files- app.py +25 -12
- global_func/predict_dupes.py +63 -22
app.py
CHANGED
@@ -724,17 +724,30 @@ with tab2:
|
|
724 |
|
725 |
if site_var == 'Draftkings':
|
726 |
if type_var == 'Classic':
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
738 |
elif type_var == 'Showdown':
|
739 |
if sport_var == 'NFL':
|
740 |
map_dict = {
|
@@ -831,7 +844,7 @@ with tab2:
|
|
831 |
submitted = st.form_submit_button("Trim")
|
832 |
if submitted:
|
833 |
st.write('initiated')
|
834 |
-
st.session_state['portfolio'] = predict_dupes(st.session_state['portfolio'], map_dict, site_var, type_var, Contest_Size, strength_var)
|
835 |
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Dupes'] <= max_dupes]
|
836 |
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['salary'] >= min_salary]
|
837 |
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['salary'] <= max_salary]
|
|
|
724 |
|
725 |
if site_var == 'Draftkings':
|
726 |
if type_var == 'Classic':
|
727 |
+
if sport_var == 'CS2':
|
728 |
+
map_dict = {
|
729 |
+
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
|
730 |
+
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
|
731 |
+
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
732 |
+
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
|
733 |
+
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
|
734 |
+
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
|
735 |
+
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'] * 1.5)),
|
736 |
+
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
|
737 |
+
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
|
738 |
+
}
|
739 |
+
elif sport_var != 'CS2':
|
740 |
+
map_dict = {
|
741 |
+
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
|
742 |
+
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
|
743 |
+
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
744 |
+
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
|
745 |
+
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
|
746 |
+
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
|
747 |
+
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
748 |
+
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
|
749 |
+
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
|
750 |
+
}
|
751 |
elif type_var == 'Showdown':
|
752 |
if sport_var == 'NFL':
|
753 |
map_dict = {
|
|
|
844 |
submitted = st.form_submit_button("Trim")
|
845 |
if submitted:
|
846 |
st.write('initiated')
|
847 |
+
st.session_state['portfolio'] = predict_dupes(st.session_state['portfolio'], map_dict, site_var, type_var, Contest_Size, strength_var, sport_var)
|
848 |
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Dupes'] <= max_dupes]
|
849 |
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['salary'] >= min_salary]
|
850 |
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['salary'] <= max_salary]
|
global_func/predict_dupes.py
CHANGED
@@ -5,7 +5,7 @@ import time
|
|
5 |
from fuzzywuzzy import process
|
6 |
import math
|
7 |
|
8 |
-
def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, strength_var):
|
9 |
if strength_var == 'Weak':
|
10 |
dupes_multiplier = .75
|
11 |
percentile_multiplier = .90
|
@@ -126,27 +126,68 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
|
|
126 |
np.round(portfolio['dupes_calc'], 0) - 1
|
127 |
)
|
128 |
if type_var == 'Classic':
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
portfolio['Dupes'] = np.round(portfolio['Dupes'], 0)
|
152 |
portfolio['own_ratio'] = np.where(
|
|
|
5 |
from fuzzywuzzy import process
|
6 |
import math
|
7 |
|
8 |
+
def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, strength_var, sport_var):
|
9 |
if strength_var == 'Weak':
|
10 |
dupes_multiplier = .75
|
11 |
percentile_multiplier = .90
|
|
|
126 |
np.round(portfolio['dupes_calc'], 0) - 1
|
127 |
)
|
128 |
if type_var == 'Classic':
|
129 |
+
if sport_var == 'CS2':
|
130 |
+
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
|
131 |
+
own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']
|
132 |
+
calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
|
133 |
+
flex_ownerships = pd.concat([
|
134 |
+
portfolio.iloc[:,1].map(maps_dict['own_map']),
|
135 |
+
portfolio.iloc[:,2].map(maps_dict['own_map']),
|
136 |
+
portfolio.iloc[:,3].map(maps_dict['own_map']),
|
137 |
+
portfolio.iloc[:,4].map(maps_dict['own_map'])
|
138 |
+
])
|
139 |
+
flex_rank = flex_ownerships.rank(pct=True)
|
140 |
+
|
141 |
+
# Assign ranks back to individual columns using the same rank scale
|
142 |
+
portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True)
|
143 |
+
portfolio['FLEX1_Own_percent_rank'] = portfolio.iloc[:,1].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
|
144 |
+
portfolio['FLEX2_Own_percent_rank'] = portfolio.iloc[:,2].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
|
145 |
+
portfolio['FLEX3_Own_percent_rank'] = portfolio.iloc[:,3].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
|
146 |
+
portfolio['FLEX4_Own_percent_rank'] = portfolio.iloc[:,4].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
|
147 |
+
|
148 |
+
portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']) / 100
|
149 |
+
portfolio['FLEX1_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']) / 100
|
150 |
+
portfolio['FLEX2_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']) / 100
|
151 |
+
portfolio['FLEX3_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']) / 100
|
152 |
+
portfolio['FLEX4_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']) / 100
|
153 |
+
|
154 |
+
portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
|
155 |
+
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
|
156 |
+
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
|
157 |
+
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
|
158 |
+
|
159 |
+
# Calculate dupes formula
|
160 |
+
portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
|
161 |
+
portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier
|
162 |
+
|
163 |
+
# Round and handle negative values
|
164 |
+
portfolio['Dupes'] = np.where(
|
165 |
+
np.round(portfolio['dupes_calc'], 0) <= 0,
|
166 |
+
0,
|
167 |
+
np.round(portfolio['dupes_calc'], 0) - 1
|
168 |
+
)
|
169 |
+
elif sport_var != 'CS2':
|
170 |
+
num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']])
|
171 |
+
dup_count_columns = [f'player_{i}_percent_rank' for i in range(1, num_players + 1)]
|
172 |
+
own_columns = [f'player_{i}_own' for i in range(1, num_players + 1)]
|
173 |
+
calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
|
174 |
+
for i in range(1, num_players + 1):
|
175 |
+
portfolio[f'player_{i}_percent_rank'] = portfolio.iloc[:,i-1].map(maps_dict['own_percent_rank'])
|
176 |
+
portfolio[f'player_{i}_own'] = portfolio.iloc[:,i-1].map(maps_dict['own_map']) / 100
|
177 |
+
|
178 |
+
portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
|
179 |
+
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
|
180 |
+
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
|
181 |
+
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
|
182 |
+
|
183 |
+
portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
|
184 |
+
portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier
|
185 |
+
# Round and handle negative values
|
186 |
+
portfolio['Dupes'] = np.where(
|
187 |
+
np.round(portfolio['dupes_calc'], 0) <= 0,
|
188 |
+
0,
|
189 |
+
np.round(portfolio['dupes_calc'], 0) - 1
|
190 |
+
)
|
191 |
|
192 |
portfolio['Dupes'] = np.round(portfolio['Dupes'], 0)
|
193 |
portfolio['own_ratio'] = np.where(
|