James McCool
commited on
Commit
·
c7e2afa
1
Parent(s):
7a401f2
Add geometric mean calculation in predict_dupes: introduce a new column 'Goemean' to compute the geometric mean of ownership percentages, enhancing portfolio analysis capabilities.
Browse files
global_func/predict_dupes.py
CHANGED
@@ -3,6 +3,7 @@ import numpy as np
|
|
3 |
import pandas as pd
|
4 |
import time
|
5 |
from fuzzywuzzy import process
|
|
|
6 |
|
7 |
def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, strength_var):
|
8 |
if strength_var == 'Weak':
|
@@ -182,6 +183,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
|
|
182 |
portfolio['Lineup Edge'] = portfolio.apply(lambda row: row['Lineup Edge'] / (row['Dupes'] + 1) if row['Dupes'] > 0 else row['Lineup Edge'], axis=1)
|
183 |
portfolio['Lineup Edge'] = portfolio['Lineup Edge'] - portfolio['Lineup Edge'].mean()
|
184 |
portfolio['Weighted Own'] = (portfolio['Own'] * ((portfolio[own_columns].max(axis=1) - portfolio[own_columns].min(axis=1)) / 100)) * 200
|
|
|
185 |
portfolio = portfolio.drop(columns=dup_count_columns)
|
186 |
portfolio = portfolio.drop(columns=own_columns)
|
187 |
portfolio = portfolio.drop(columns=calc_columns)
|
|
|
3 |
import pandas as pd
|
4 |
import time
|
5 |
from fuzzywuzzy import process
|
6 |
+
import math
|
7 |
|
8 |
def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, strength_var):
|
9 |
if strength_var == 'Weak':
|
|
|
183 |
portfolio['Lineup Edge'] = portfolio.apply(lambda row: row['Lineup Edge'] / (row['Dupes'] + 1) if row['Dupes'] > 0 else row['Lineup Edge'], axis=1)
|
184 |
portfolio['Lineup Edge'] = portfolio['Lineup Edge'] - portfolio['Lineup Edge'].mean()
|
185 |
portfolio['Weighted Own'] = (portfolio['Own'] * ((portfolio[own_columns].max(axis=1) - portfolio[own_columns].min(axis=1)) / 100)) * 200
|
186 |
+
portfolio['Goemean'] = math.pow((portfolio[own_columns] * 100).product(axis=1), 1 / len(own_columns))
|
187 |
portfolio = portfolio.drop(columns=dup_count_columns)
|
188 |
portfolio = portfolio.drop(columns=own_columns)
|
189 |
portfolio = portfolio.drop(columns=calc_columns)
|