James McCool commited on
Commit
d28e504
·
1 Parent(s): d3dffbb

Update reassess_finish_percentile calculation in reassess_edge.py to use max() instead of min(), ensuring that the finish_percentile does not fall below the sum of a minimum threshold and 'Win%', thereby enhancing the accuracy of lineup assessments.

Browse files
Files changed (1) hide show
  1. global_func/reassess_edge.py +1 -1
global_func/reassess_edge.py CHANGED
@@ -118,7 +118,7 @@ def reassess_edge(refactored_frame: pd.DataFrame, original_frame: pd.DataFrame,
118
  prev_finish_percentile = refactored_df.loc[lineups, 'Finish_percentile']
119
  prev_dupes = refactored_df.loc[lineups, 'Dupes']
120
  refactored_df.loc[lineups, 'Dupes'] = reassess_dupes(refactored_df.loc[lineups, :], salary_max)
121
- refactored_df.loc[lineups, 'Finish_percentile'] = min(reassess_finish_percentile(refactored_df.loc[lineups, :]), .005 + refactored_df.loc[lineups, 'Win%'])
122
  refactored_df.loc[lineups, 'Win%'] = refactored_df.loc[lineups, 'Win%']
123
  refactored_df.loc[lineups, 'Lineup Edge'] = reassess_lineup_edge(refactored_df.loc[lineups, :], Contest_Size, prev_finish_percentile, prev_dupes)
124
  refactored_df.loc[lineups, 'Weighted Own'] = calculate_weighted_ownership_single_row(refactored_df.loc[lineups, own_columns])
 
118
  prev_finish_percentile = refactored_df.loc[lineups, 'Finish_percentile']
119
  prev_dupes = refactored_df.loc[lineups, 'Dupes']
120
  refactored_df.loc[lineups, 'Dupes'] = reassess_dupes(refactored_df.loc[lineups, :], salary_max)
121
+ refactored_df.loc[lineups, 'Finish_percentile'] = max(reassess_finish_percentile(refactored_df.loc[lineups, :]), .005 + refactored_df.loc[lineups, 'Win%'])
122
  refactored_df.loc[lineups, 'Win%'] = refactored_df.loc[lineups, 'Win%']
123
  refactored_df.loc[lineups, 'Lineup Edge'] = reassess_lineup_edge(refactored_df.loc[lineups, :], Contest_Size, prev_finish_percentile, prev_dupes)
124
  refactored_df.loc[lineups, 'Weighted Own'] = calculate_weighted_ownership_single_row(refactored_df.loc[lineups, own_columns])