James McCool
commited on
Commit
·
d33556d
1
Parent(s):
4c00913
Refactor sorting logic in small_field_preset.py to ensure accurate portfolio filtering by utilizing 'Own' for sorting. This change enhances the portfolio distribution process by maintaining consistency in data handling across teams.
Browse files
global_func/distribute_preset.py
CHANGED
@@ -8,7 +8,7 @@ def distribute_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols:
|
|
8 |
for team in portfolio['Stack'].unique():
|
9 |
rows_to_drop = []
|
10 |
working_portfolio = portfolio.copy()
|
11 |
-
working_portfolio = working_portfolio[working_portfolio['Stack'] == team].sort_values(by='
|
12 |
working_portfolio = working_portfolio.reset_index(drop=True)
|
13 |
curr_own_type_max = working_portfolio.loc[0, 'Similarity Score'] + (slack_var / 20 * working_portfolio.loc[0, 'Similarity Score'])
|
14 |
|
|
|
8 |
for team in portfolio['Stack'].unique():
|
9 |
rows_to_drop = []
|
10 |
working_portfolio = portfolio.copy()
|
11 |
+
working_portfolio = working_portfolio[working_portfolio['Stack'] == team].sort_values(by='median', ascending = False)
|
12 |
working_portfolio = working_portfolio.reset_index(drop=True)
|
13 |
curr_own_type_max = working_portfolio.loc[0, 'Similarity Score'] + (slack_var / 20 * working_portfolio.loc[0, 'Similarity Score'])
|
14 |
|
global_func/small_field_preset.py
CHANGED
@@ -7,8 +7,8 @@ def small_field_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols
|
|
7 |
|
8 |
for team in portfolio['Stack'].unique():
|
9 |
rows_to_drop = []
|
10 |
-
working_portfolio = portfolio
|
11 |
-
working_portfolio = working_portfolio[working_portfolio['
|
12 |
working_portfolio = working_portfolio.reset_index(drop=True)
|
13 |
curr_own_type_max = working_portfolio.loc[0, 'Weighted Own'] + (slack_var / 20 * working_portfolio.loc[0, 'Weighted Own'])
|
14 |
|
@@ -20,6 +20,7 @@ def small_field_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols
|
|
20 |
|
21 |
working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
|
22 |
concat_portfolio = pd.concat([concat_portfolio, working_portfolio])
|
|
|
23 |
if len(concat_portfolio) >= lineup_target:
|
24 |
return concat_portfolio.sort_values(by='Own', ascending=False).head(lineup_target)
|
25 |
|
|
|
7 |
|
8 |
for team in portfolio['Stack'].unique():
|
9 |
rows_to_drop = []
|
10 |
+
working_portfolio = portfolio.copy()
|
11 |
+
working_portfolio = working_portfolio[working_portfolio['Stack'] == team].sort_values(by='Own', ascending = False)
|
12 |
working_portfolio = working_portfolio.reset_index(drop=True)
|
13 |
curr_own_type_max = working_portfolio.loc[0, 'Weighted Own'] + (slack_var / 20 * working_portfolio.loc[0, 'Weighted Own'])
|
14 |
|
|
|
20 |
|
21 |
working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
|
22 |
concat_portfolio = pd.concat([concat_portfolio, working_portfolio])
|
23 |
+
|
24 |
if len(concat_portfolio) >= lineup_target:
|
25 |
return concat_portfolio.sort_values(by='Own', ascending=False).head(lineup_target)
|
26 |
|