James McCool commited on
Commit
d9db89f
·
1 Parent(s): 29377be

Refactor import statements across multiple files to replace 'fuzzywuzzy' with 'rapidfuzz' for improved performance and consistency in string matching functionality. Additionally, clean up unused imports in app.py and related global functions to enhance code clarity and maintainability.

Browse files
app.py CHANGED
@@ -1,11 +1,8 @@
1
  import streamlit as st
2
  st.set_page_config(layout="wide")
3
- import numpy as np
4
  import pandas as pd
5
- import time
6
- from rapidfuzz import process, fuzz
7
  import random
8
- import re
9
  from collections import Counter
10
 
11
  ## import global functions
 
1
  import streamlit as st
2
  st.set_page_config(layout="wide")
 
3
  import pandas as pd
4
+ from rapidfuzz import process
 
5
  import random
 
6
  from collections import Counter
7
 
8
  ## import global functions
global_func/clean_player_name.py CHANGED
@@ -2,7 +2,6 @@ import streamlit as st
2
  import numpy as np
3
  import pandas as pd
4
  import time
5
- from fuzzywuzzy import process
6
 
7
  def clean_player_name(name):
8
  # Handle colon case first (remove everything before colon)
 
2
  import numpy as np
3
  import pandas as pd
4
  import time
 
5
 
6
  def clean_player_name(name):
7
  # Handle colon case first (remove everything before colon)
global_func/find_csv_mismatches.py CHANGED
@@ -1,7 +1,7 @@
1
  import streamlit as st
2
  import numpy as np
3
  import pandas as pd
4
- from fuzzywuzzy import process
5
 
6
  def find_csv_mismatches(csv_df, projections_df):
7
  # Create copies of the dataframes to avoid modifying the originals
 
1
  import streamlit as st
2
  import numpy as np
3
  import pandas as pd
4
+ from rapidfuzz import process
5
 
6
  def find_csv_mismatches(csv_df, projections_df):
7
  # Create copies of the dataframes to avoid modifying the originals
global_func/find_name_mismatches.py CHANGED
@@ -2,7 +2,7 @@ import streamlit as st
2
  import numpy as np
3
  import pandas as pd
4
  import time
5
- from fuzzywuzzy import process
6
 
7
  def find_name_mismatches(portfolio_df, projections_df):
8
  """
 
2
  import numpy as np
3
  import pandas as pd
4
  import time
5
+ from rapidfuzz import process
6
 
7
  def find_name_mismatches(portfolio_df, projections_df):
8
  """
global_func/get_portfolio_names.py CHANGED
@@ -2,7 +2,7 @@ import streamlit as st
2
  import numpy as np
3
  import pandas as pd
4
  import time
5
- from fuzzywuzzy import process
6
 
7
  def get_portfolio_names(portfolio_df):
8
  """
 
2
  import numpy as np
3
  import pandas as pd
4
  import time
5
+ from rapidfuzz import process
6
 
7
  def get_portfolio_names(portfolio_df):
8
  """
global_func/highlight_rows.py CHANGED
@@ -2,7 +2,7 @@ import streamlit as st
2
  import numpy as np
3
  import pandas as pd
4
  import time
5
- from fuzzywuzzy import process
6
 
7
  def highlight_changes(row):
8
  original_row = st.session_state['portfolio'].iloc[row.name]
 
2
  import numpy as np
3
  import pandas as pd
4
  import time
5
+ from rapidfuzz import process
6
 
7
  def highlight_changes(row):
8
  original_row = st.session_state['portfolio'].iloc[row.name]
global_func/load_csv.py CHANGED
@@ -2,7 +2,7 @@ import streamlit as st
2
  import numpy as np
3
  import pandas as pd
4
  import time
5
- from fuzzywuzzy import process
6
 
7
  def load_csv(upload):
8
  if upload is not None:
 
2
  import numpy as np
3
  import pandas as pd
4
  import time
5
+ from rapidfuzz import process
6
 
7
  def load_csv(upload):
8
  if upload is not None:
global_func/load_dk_fd_file.py CHANGED
@@ -2,7 +2,7 @@ import streamlit as st
2
  import numpy as np
3
  import pandas as pd
4
  import time
5
- from fuzzywuzzy import process
6
  import re
7
 
8
  def load_dk_fd_file(lineups, csv_file):
 
2
  import numpy as np
3
  import pandas as pd
4
  import time
5
+ from rapidfuzz import process
6
  import re
7
 
8
  def load_dk_fd_file(lineups, csv_file):
global_func/load_file.py CHANGED
@@ -2,7 +2,7 @@ import streamlit as st
2
  import numpy as np
3
  import pandas as pd
4
  import time
5
- from fuzzywuzzy import process
6
  import re
7
 
8
  ## import global functions
 
2
  import numpy as np
3
  import pandas as pd
4
  import time
5
+ from rapidfuzz import process
6
  import re
7
 
8
  ## import global functions
global_func/load_ss_file.py CHANGED
@@ -2,7 +2,7 @@ import streamlit as st
2
  import numpy as np
3
  import pandas as pd
4
  import time
5
- from fuzzywuzzy import process
6
  import re
7
 
8
  def load_ss_file(lineups, csv_file):
 
2
  import numpy as np
3
  import pandas as pd
4
  import time
5
+ from rapidfuzz import process
6
  import re
7
 
8
  def load_ss_file(lineups, csv_file):
global_func/optimize_lineup.py CHANGED
@@ -2,7 +2,7 @@ import streamlit as st
2
  import numpy as np
3
  import pandas as pd
4
  import time
5
- from fuzzywuzzy import process
6
 
7
  def optimize_lineup(row):
8
  current_lineup = []
 
2
  import numpy as np
3
  import pandas as pd
4
  import time
5
+ from rapidfuzz import process
6
 
7
  def optimize_lineup(row):
8
  current_lineup = []
global_func/predict_dupes.py CHANGED
@@ -2,7 +2,6 @@ import streamlit as st
2
  import numpy as np
3
  import pandas as pd
4
  import time
5
- from fuzzywuzzy import process
6
  import math
7
  from difflib import SequenceMatcher
8
 
 
2
  import numpy as np
3
  import pandas as pd
4
  import time
 
5
  import math
6
  from difflib import SequenceMatcher
7
 
global_func/reduce_volatility_preset.py CHANGED
@@ -1,5 +1,4 @@
1
  import pandas as pd
2
- import numpy as np
3
 
4
  def reduce_volatility_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols: list, sport: str):
5
  excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Diversity']
 
1
  import pandas as pd
 
2
 
3
  def reduce_volatility_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols: list, sport: str):
4
  excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Diversity']
global_func/small_field_preset.py CHANGED
@@ -1,5 +1,4 @@
1
  import pandas as pd
2
- import numpy as np
3
 
4
  def small_field_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols: list, sport: str):
5
  excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Diversity']
 
1
  import pandas as pd
 
2
 
3
  def small_field_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols: list, sport: str):
4
  excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Diversity']
global_func/volatility_preset.py CHANGED
@@ -1,5 +1,4 @@
1
  import pandas as pd
2
- import numpy as np
3
 
4
  def volatility_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols: list, sport: str):
5
  excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Diversity']
 
1
  import pandas as pd
 
2
 
3
  def volatility_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols: list, sport: str):
4
  excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Diversity']
requirements.txt CHANGED
@@ -1,11 +1,4 @@
1
  streamlit
2
- gspread
3
- openpyxl
4
- matplotlib
5
- rapidfuzz
6
- fuzzywuzzy
7
- pulp
8
- docker
9
- plotly
10
- scipy
11
- pymongo
 
1
  streamlit
2
+ pandas
3
+ numpy
4
+ rapidfuzz