import pandas as pd import math from global_func.small_field_preset import small_field_preset from global_func.large_field_preset import large_field_preset def hedging_preset(portfolio: pd.DataFrame, lineup_target: int, projections_file: pd.DataFrame): excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Similarity Score'] check_own_df = projections_file.copy() check_own_df = check_own_df.sort_values(by='Own', ascending=False) top_owned = check_own_df['player_names'].head(3).tolist() concat_portfolio = pd.DataFrame(columns=portfolio.columns) for players in top_owned: working_df = portfolio.copy() # Create mask for lineups that contain any of the removed players player_columns = [col for col in working_df.columns if col not in excluded_cols] remove_mask = working_df[player_columns].apply( lambda row: not any(player in list(row) for player in players), axis=1 ) lock_mask = working_df[player_columns].apply( lambda row: all(player in list(row) for player in players), axis=1 ) removed_df = working_df[remove_mask] locked_df = working_df[lock_mask] removed_lineups = small_field_preset(removed_df, math.ceil(lineup_target / 2), excluded_cols) locked_lineups = large_field_preset(locked_df, math.ceil(lineup_target / 2), excluded_cols) concat_portfolio = pd.concat([concat_portfolio, removed_lineups, locked_lineups]) return concat_portfolio.sort_values(by='median', ascending=False).head(lineup_target)