import pandas as pd def distribute_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols: list): for slack_var in range(1, 20): concat_portfolio = pd.DataFrame(columns=portfolio.columns) for finishing_range in range(1, 20): rows_to_drop = [] working_portfolio = portfolio.copy() working_portfolio = working_portfolio[(working_portfolio['Finish_percentile'] <= (finishing_range / 100)) & (working_portfolio['Finish_percentile'] >= ((finishing_range - 1) / 100))].sort_values(by='median', ascending = False) working_portfolio = working_portfolio.reset_index(drop=True) curr_own_type_max = working_portfolio.loc[0, 'Weighted Own'] + (slack_var / 20 * working_portfolio.loc[0, 'Weighted Own']) for i in range(1, len(working_portfolio)): if working_portfolio.loc[i, 'Weighted'] > curr_own_type_max: rows_to_drop.append(i) else: curr_own_type_max = working_portfolio.loc[i, 'Weighted'] + (slack_var / 20 * working_portfolio.loc[i, 'Weighted']) working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True) concat_portfolio = pd.concat([concat_portfolio, working_portfolio]) if len(concat_portfolio) >= lineup_target: return concat_portfolio.sort_values(by='Finish_percentile', ascending=True).head(lineup_target) return concat_portfolio.sort_values(by='Finish_percentile', ascending=True)