import pandas as pd def distribute_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols: list): for slack_var in range(1, 20): concat_portfolio = pd.DataFrame(columns=portfolio.columns) for finishing_range in range(1, 20): finish_threshold = (finishing_range / 100) lower_threshold = ((finishing_range - 1) / 100) rows_to_drop = [] working_portfolio = portfolio.copy() if finishing_range == 1: working_portfolio = working_portfolio[working_portfolio['Finish_percentile'] <= finish_threshold] elif finishing_range == 20: working_portfolio = working_portfolio[working_portfolio['Finish_percentile'] >= lower_threshold] else: working_portfolio = working_portfolio[working_portfolio['Finish_percentile'] <= finish_threshold] working_portfolio = working_portfolio[working_portfolio['Finish_percentile'] >= lower_threshold] working_portfolio = working_portfolio.sort_values(by='median', ascending = False) working_portfolio = working_portfolio.reset_index(drop=True) if len(working_portfolio) == 0: continue elif len(working_portfolio) >= 1: curr_own_type_max = working_portfolio.loc[0, 'Weighted Own'] + (slack_var / 20 * working_portfolio.loc[0, 'Weighted Own']) for i in range(1, len(working_portfolio)): if working_portfolio.loc[i, 'Weighted Own'] > curr_own_type_max: rows_to_drop.append(i) else: curr_own_type_max = working_portfolio.loc[i, 'Weighted Own'] + (slack_var / 20 * working_portfolio.loc[i, 'Weighted Own']) working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True) concat_portfolio = pd.concat([concat_portfolio, working_portfolio.head(10)]) if len(concat_portfolio) >= lineup_target: return concat_portfolio.sort_values(by='Finish_percentile', ascending=True).head(lineup_target) return concat_portfolio.sort_values(by='Finish_percentile', ascending=True)