import pandas as pd def small_field_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols: list): excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Similarity Score'] player_columns = [col for col in portfolio.columns if col not in excluded_cols] for slack_var in range(1, 20): concat_portfolio = pd.DataFrame(columns=portfolio.columns) for team in portfolio['Stack'].unique(): rows_to_drop = [] working_portfolio = portfolio.copy() working_portfolio = working_portfolio[working_portfolio['Stack'] == team].sort_values(by='Own', ascending = False) working_portfolio = working_portfolio.reset_index(drop=True) curr_own_type_max = working_portfolio.loc[0, 'Weighted Own'] + (slack_var / 20 * working_portfolio.loc[0, 'Weighted Own']) for i in range(1, len(working_portfolio)): if working_portfolio.loc[i, 'Weighted Own'] > curr_own_type_max: rows_to_drop.append(i) else: curr_own_type_max = working_portfolio.loc[i, 'Weighted Own'] + (slack_var / 20 * working_portfolio.loc[i, 'Weighted Own']) working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True) concat_portfolio = pd.concat([concat_portfolio, working_portfolio]) if len(concat_portfolio) >= lineup_target: return concat_portfolio.sort_values(by='Own', ascending=False).head(lineup_target) return concat_portfolio.sort_values(by='Own', ascending=False)