Spaces:
Running
Running
James McCool
commited on
Commit
·
439909e
1
Parent(s):
6ed1700
Implement initial Streamlit application with MongoDB integration and data simulation features
Browse files- app.py +514 -0
- app.yaml +10 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,514 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
st.set_page_config(layout="wide")
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import gspread
|
6 |
+
import pymongo
|
7 |
+
import time
|
8 |
+
|
9 |
+
@st.cache_resource
|
10 |
+
def init_conn():
|
11 |
+
|
12 |
+
uri = st.secrets['mongo_uri']
|
13 |
+
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
14 |
+
db = client["League_of_Legends_Database"]
|
15 |
+
|
16 |
+
return db
|
17 |
+
|
18 |
+
db = init_conn()
|
19 |
+
|
20 |
+
percentages_format = {'Exposure': '{:.2%}'}
|
21 |
+
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
|
22 |
+
|
23 |
+
dk_columns = ['CPT', 'TOP', 'JNG', 'MID', 'ADC', 'SUP', 'TEAM', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
24 |
+
fd_columns = ['CPT', 'TOP', 'JNG', 'MID', 'ADC', 'SUP', 'TEAM', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
25 |
+
|
26 |
+
@st.cache_data(ttl = 599)
|
27 |
+
def init_DK_seed_frames(league):
|
28 |
+
|
29 |
+
if league == 'LCK':
|
30 |
+
collection = db['LOL_LEC_seed_frame']
|
31 |
+
elif league =='LEC':
|
32 |
+
collection = db['LOL_LEC_seed_frame']
|
33 |
+
elif league =='LTA':
|
34 |
+
collection = db['LOL_LTA_seed_frame']
|
35 |
+
cursor = collection.find()
|
36 |
+
|
37 |
+
raw_display = pd.DataFrame(list(cursor))
|
38 |
+
raw_display = raw_display[['CPT', 'TOP', 'JNG', 'MID', 'ADC', 'SUP', 'TEAM', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
39 |
+
DK_seed = raw_display.to_numpy()
|
40 |
+
|
41 |
+
return DK_seed
|
42 |
+
|
43 |
+
@st.cache_data(ttl = 599)
|
44 |
+
def init_baselines():
|
45 |
+
|
46 |
+
collection = db['Player_Range_of_Outcomes']
|
47 |
+
cursor = collection.find()
|
48 |
+
|
49 |
+
raw_display = pd.DataFrame(list(cursor))
|
50 |
+
|
51 |
+
raw_display['Player'] = raw_display['Player'].astype(str)
|
52 |
+
raw_display['STDev'] = raw_display['Median'] / 4
|
53 |
+
load_display = raw_display.drop_duplicates(subset=['Player'], keep='first')
|
54 |
+
|
55 |
+
dk_raw = load_display.dropna(subset=['Median'])
|
56 |
+
|
57 |
+
return dk_raw
|
58 |
+
|
59 |
+
@st.cache_data
|
60 |
+
def convert_df(array):
|
61 |
+
array = pd.DataFrame(array, columns=column_names)
|
62 |
+
return array.to_csv().encode('utf-8')
|
63 |
+
|
64 |
+
@st.cache_data
|
65 |
+
def calculate_DK_value_frequencies(np_array):
|
66 |
+
unique, counts = np.unique(np_array[:, :6], return_counts=True)
|
67 |
+
frequencies = counts / len(np_array) # Normalize by the number of rows
|
68 |
+
combined_array = np.column_stack((unique, frequencies))
|
69 |
+
return combined_array
|
70 |
+
|
71 |
+
@st.cache_data
|
72 |
+
def calculate_FD_value_frequencies(np_array):
|
73 |
+
unique, counts = np.unique(np_array[:, :6], return_counts=True)
|
74 |
+
frequencies = counts / len(np_array) # Normalize by the number of rows
|
75 |
+
combined_array = np.column_stack((unique, frequencies))
|
76 |
+
return combined_array
|
77 |
+
|
78 |
+
@st.cache_data
|
79 |
+
def sim_contest(Sim_size, seed_frame, maps_dict, sharp_split, Contest_Size):
|
80 |
+
SimVar = 1
|
81 |
+
Sim_Winners = []
|
82 |
+
fp_array = seed_frame[:sharp_split, :]
|
83 |
+
|
84 |
+
# Pre-vectorize functions
|
85 |
+
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
86 |
+
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
|
87 |
+
|
88 |
+
st.write('Simulating contest on frames')
|
89 |
+
|
90 |
+
while SimVar <= Sim_size:
|
91 |
+
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
|
92 |
+
|
93 |
+
sample_arrays1 = np.c_[
|
94 |
+
fp_random,
|
95 |
+
np.sum(np.random.normal(
|
96 |
+
loc=vec_projection_map(fp_random[:, :-7]),
|
97 |
+
scale=vec_stdev_map(fp_random[:, :-7])),
|
98 |
+
axis=1)
|
99 |
+
]
|
100 |
+
|
101 |
+
sample_arrays = sample_arrays1
|
102 |
+
|
103 |
+
final_array = sample_arrays[sample_arrays[:, 7].argsort()[::-1]]
|
104 |
+
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
|
105 |
+
Sim_Winners.append(best_lineup)
|
106 |
+
SimVar += 1
|
107 |
+
|
108 |
+
return Sim_Winners
|
109 |
+
|
110 |
+
DK_seed = init_DK_seed_frames('LCK')
|
111 |
+
dk_raw = init_baselines()
|
112 |
+
|
113 |
+
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
|
114 |
+
with tab2:
|
115 |
+
col1, col2 = st.columns([1, 7])
|
116 |
+
with col1:
|
117 |
+
if st.button("Load/Reset Data", key='reset1'):
|
118 |
+
st.cache_data.clear()
|
119 |
+
for key in st.session_state.keys():
|
120 |
+
del st.session_state[key]
|
121 |
+
DK_seed = init_DK_seed_frames('LCK')
|
122 |
+
dk_raw = init_baselines()
|
123 |
+
|
124 |
+
slate_var1 = st.radio("Which data are you loading?", ('LCK', 'LEC', 'LTA'))
|
125 |
+
site_var1 = st.radio("What site are you working with?", ('Draftkings'))
|
126 |
+
if site_var1 == 'Draftkings':
|
127 |
+
raw_baselines = dk_raw.copy()
|
128 |
+
column_names = dk_columns
|
129 |
+
|
130 |
+
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
131 |
+
if team_var1 == 'Specific Teams':
|
132 |
+
team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique())
|
133 |
+
elif team_var1 == 'Full Slate':
|
134 |
+
team_var2 = dk_raw.Team.values.tolist()
|
135 |
+
|
136 |
+
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
|
137 |
+
if stack_var1 == 'Specific Stack Sizes':
|
138 |
+
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [4, 3, 2, 1, 0])
|
139 |
+
elif stack_var1 == 'Full Slate':
|
140 |
+
stack_var2 = [4, 3, 2, 1, 0]
|
141 |
+
|
142 |
+
if st.button("Prepare data export", key='data_export'):
|
143 |
+
data_export = st.session_state.working_seed.copy()
|
144 |
+
st.download_button(
|
145 |
+
label="Export optimals set",
|
146 |
+
data=convert_df(data_export),
|
147 |
+
file_name='LOL_optimals_export.csv',
|
148 |
+
mime='text/csv',
|
149 |
+
)
|
150 |
+
|
151 |
+
with col2:
|
152 |
+
if st.button("Load Data", key='load_data'):
|
153 |
+
if site_var1 == 'Draftkings':
|
154 |
+
if 'working_seed' in st.session_state:
|
155 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 8], team_var2)]
|
156 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], stack_var2)]
|
157 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
158 |
+
elif 'working_seed' not in st.session_state:
|
159 |
+
st.session_state.working_seed = init_DK_seed_frames(slate_var1)
|
160 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 8], team_var2)]
|
161 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], stack_var2)]
|
162 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
163 |
+
|
164 |
+
with st.container():
|
165 |
+
if 'data_export_display' in st.session_state:
|
166 |
+
st.dataframe(st.session_state.data_export_display.style.format(freq_format, precision=2), use_container_width = True)
|
167 |
+
|
168 |
+
with tab1:
|
169 |
+
col1, col2 = st.columns([1, 7])
|
170 |
+
with col1:
|
171 |
+
if st.button("Load/Reset Data", key='reset2'):
|
172 |
+
st.cache_data.clear()
|
173 |
+
for key in st.session_state.keys():
|
174 |
+
del st.session_state[key]
|
175 |
+
DK_seed = init_DK_seed_frames('LCK')
|
176 |
+
dk_raw = init_baselines()
|
177 |
+
sim_slate_var1 = st.radio("Which data are you loading?", ('LCK', 'LEC', 'LTA'), key='sim_slate_var1')
|
178 |
+
|
179 |
+
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings'), key='sim_site_var1')
|
180 |
+
if sim_site_var1 == 'Draftkings':
|
181 |
+
raw_baselines = dk_raw.copy()
|
182 |
+
column_names = dk_columns
|
183 |
+
|
184 |
+
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
|
185 |
+
if contest_var1 == 'Small':
|
186 |
+
Contest_Size = 1000
|
187 |
+
|
188 |
+
elif contest_var1 == 'Medium':
|
189 |
+
Contest_Size = 5000
|
190 |
+
elif contest_var1 == 'Large':
|
191 |
+
Contest_Size = 10000
|
192 |
+
elif contest_var1 == 'Custom':
|
193 |
+
Contest_Size = st.number_input("Insert contest size", value=100, placeholder="Type a number under 10,000...")
|
194 |
+
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
|
195 |
+
if strength_var1 == 'Not Very':
|
196 |
+
sharp_split = 500000
|
197 |
+
elif strength_var1 == 'Below Average':
|
198 |
+
sharp_split = 400000
|
199 |
+
elif strength_var1 == 'Average':
|
200 |
+
sharp_split = 300000
|
201 |
+
elif strength_var1 == 'Above Average':
|
202 |
+
sharp_split = 200000
|
203 |
+
elif strength_var1 == 'Very':
|
204 |
+
sharp_split = 100000
|
205 |
+
|
206 |
+
|
207 |
+
with col2:
|
208 |
+
if st.button("Run Contest Sim"):
|
209 |
+
if 'working_seed' in st.session_state:
|
210 |
+
maps_dict = {
|
211 |
+
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
212 |
+
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
213 |
+
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
214 |
+
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
|
215 |
+
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
216 |
+
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
217 |
+
}
|
218 |
+
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, sharp_split, Contest_Size)
|
219 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
220 |
+
|
221 |
+
# Initial setup
|
222 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
|
223 |
+
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
|
224 |
+
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
|
225 |
+
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
226 |
+
|
227 |
+
# Type Casting
|
228 |
+
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
|
229 |
+
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
230 |
+
|
231 |
+
# Sorting
|
232 |
+
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
|
233 |
+
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
|
234 |
+
|
235 |
+
# Data Copying
|
236 |
+
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
237 |
+
|
238 |
+
# Data Copying
|
239 |
+
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
240 |
+
|
241 |
+
else:
|
242 |
+
if sim_site_var1 == 'Draftkings':
|
243 |
+
st.session_state.working_seed = init_DK_seed_frames(sim_slate_var1)
|
244 |
+
maps_dict = {
|
245 |
+
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
246 |
+
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
247 |
+
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
248 |
+
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
|
249 |
+
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
250 |
+
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
251 |
+
}
|
252 |
+
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, sharp_split, Contest_Size)
|
253 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
254 |
+
|
255 |
+
# Initial setup
|
256 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
|
257 |
+
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
|
258 |
+
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
|
259 |
+
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
260 |
+
|
261 |
+
# Type Casting
|
262 |
+
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
|
263 |
+
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
264 |
+
|
265 |
+
# Sorting
|
266 |
+
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
|
267 |
+
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
|
268 |
+
|
269 |
+
# Data Copying
|
270 |
+
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
271 |
+
|
272 |
+
# Data Copying
|
273 |
+
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
274 |
+
freq_copy = st.session_state.Sim_Winner_Display
|
275 |
+
|
276 |
+
if sim_site_var1 == 'Draftkings':
|
277 |
+
freq_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:7].values, return_counts=True)),
|
278 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
279 |
+
freq_working['Freq'] = freq_working['Freq'].astype(int)
|
280 |
+
freq_working['Position'] = freq_working['Player'].map(maps_dict['Pos_map'])
|
281 |
+
freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map'])
|
282 |
+
freq_working['Proj Own'] = freq_working['Player'].map(maps_dict['Own_map']) / 100
|
283 |
+
freq_working['Exposure'] = freq_working['Freq']/(1000)
|
284 |
+
freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
|
285 |
+
freq_working['Team'] = freq_working['Player'].map(maps_dict['Team_map'])
|
286 |
+
st.session_state.player_freq = freq_working.copy()
|
287 |
+
|
288 |
+
if sim_site_var1 == 'Draftkings':
|
289 |
+
cpt_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
|
290 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
291 |
+
cpt_working['Freq'] = cpt_working['Freq'].astype(int)
|
292 |
+
cpt_working['Position'] = cpt_working['Player'].map(maps_dict['Pos_map'])
|
293 |
+
cpt_working['Salary'] = cpt_working['Player'].map(maps_dict['Salary_map'])
|
294 |
+
cpt_working['Proj Own'] = cpt_working['Player'].map(maps_dict['Own_map']) / 600
|
295 |
+
cpt_working['Exposure'] = cpt_working['Freq']/(1000)
|
296 |
+
cpt_working['Edge'] = cpt_working['Exposure'] - cpt_working['Proj Own']
|
297 |
+
cpt_working['Team'] = cpt_working['Player'].map(maps_dict['Team_map'])
|
298 |
+
st.session_state.cpt_freq = cpt_working.copy()
|
299 |
+
|
300 |
+
if sim_site_var1 == 'Draftkings':
|
301 |
+
top_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:2].values, return_counts=True)),
|
302 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
303 |
+
top_working['Freq'] = top_working['Freq'].astype(int)
|
304 |
+
top_working['Position'] = top_working['Player'].map(maps_dict['Pos_map'])
|
305 |
+
top_working['Salary'] = top_working['Player'].map(maps_dict['Salary_map'])
|
306 |
+
top_working['Proj Own'] = top_working['Player'].map(maps_dict['Own_map']) / 105
|
307 |
+
top_working['Exposure'] = top_working['Freq']/(1000)
|
308 |
+
top_working['Edge'] = top_working['Exposure'] - top_working['Proj Own']
|
309 |
+
top_working['Team'] = top_working['Player'].map(maps_dict['Team_map'])
|
310 |
+
st.session_state.top_freq = top_working.copy()
|
311 |
+
|
312 |
+
if sim_site_var1 == 'Draftkings':
|
313 |
+
jng_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,2:3].values, return_counts=True)),
|
314 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
315 |
+
jng_working['Freq'] = jng_working['Freq'].astype(int)
|
316 |
+
jng_working['Position'] = jng_working['Player'].map(maps_dict['Pos_map'])
|
317 |
+
jng_working['Salary'] = jng_working['Player'].map(maps_dict['Salary_map'])
|
318 |
+
jng_working['Proj Own'] = jng_working['Player'].map(maps_dict['Own_map']) / 135
|
319 |
+
jng_working['Exposure'] = jng_working['Freq']/(1000)
|
320 |
+
jng_working['Edge'] = jng_working['Exposure'] - jng_working['Proj Own']
|
321 |
+
jng_working['Team'] = jng_working['Player'].map(maps_dict['Team_map'])
|
322 |
+
st.session_state.jng_freq = jng_working.copy()
|
323 |
+
|
324 |
+
if sim_site_var1 == 'Draftkings':
|
325 |
+
mid_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,3:4].values, return_counts=True)),
|
326 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
327 |
+
mid_working['Freq'] = mid_working['Freq'].astype(int)
|
328 |
+
mid_working['Position'] = mid_working['Player'].map(maps_dict['Pos_map'])
|
329 |
+
mid_working['Salary'] = mid_working['Player'].map(maps_dict['Salary_map'])
|
330 |
+
mid_working['Proj Own'] = mid_working['Player'].map(maps_dict['Own_map']) / 120
|
331 |
+
mid_working['Exposure'] = mid_working['Freq']/(1000)
|
332 |
+
mid_working['Edge'] = mid_working['Exposure'] - mid_working['Proj Own']
|
333 |
+
mid_working['Team'] = mid_working['Player'].map(maps_dict['Team_map'])
|
334 |
+
st.session_state.mid_freq = mid_working.copy()
|
335 |
+
|
336 |
+
if sim_site_var1 == 'Draftkings':
|
337 |
+
adc_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,4:5].values, return_counts=True)),
|
338 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
339 |
+
adc_working['Freq'] = adc_working['Freq'].astype(int)
|
340 |
+
adc_working['Position'] = adc_working['Player'].map(maps_dict['Pos_map'])
|
341 |
+
adc_working['Salary'] = adc_working['Player'].map(maps_dict['Salary_map'])
|
342 |
+
adc_working['Proj Own'] = adc_working['Player'].map(maps_dict['Own_map']) / 135
|
343 |
+
adc_working['Exposure'] = adc_working['Freq']/(1000)
|
344 |
+
adc_working['Edge'] = adc_working['Exposure'] - adc_working['Proj Own']
|
345 |
+
adc_working['Team'] = adc_working['Player'].map(maps_dict['Team_map'])
|
346 |
+
st.session_state.adc_freq = adc_working.copy()
|
347 |
+
|
348 |
+
if sim_site_var1 == 'Draftkings':
|
349 |
+
sup_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,5:6].values, return_counts=True)),
|
350 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
351 |
+
sup_working['Freq'] = sup_working['Freq'].astype(int)
|
352 |
+
sup_working['Position'] = sup_working['Player'].map(maps_dict['Pos_map'])
|
353 |
+
sup_working['Salary'] = sup_working['Player'].map(maps_dict['Salary_map'])
|
354 |
+
sup_working['Proj Own'] = sup_working['Player'].map(maps_dict['Own_map']) / 105
|
355 |
+
sup_working['Exposure'] = sup_working['Freq']/(1000)
|
356 |
+
sup_working['Edge'] = sup_working['Exposure'] - sup_working['Proj Own']
|
357 |
+
sup_working['Team'] = sup_working['Player'].map(maps_dict['Team_map'])
|
358 |
+
st.session_state.sup_freq = sup_working.copy()
|
359 |
+
|
360 |
+
if sim_site_var1 == 'Draftkings':
|
361 |
+
team_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,6:7].values, return_counts=True)),
|
362 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
363 |
+
team_working['Freq'] = team_working['Freq'].astype(int)
|
364 |
+
team_working['Position'] = team_working['Player'].map(maps_dict['Pos_map'])
|
365 |
+
team_working['Salary'] = team_working['Player'].map(maps_dict['Salary_map'])
|
366 |
+
team_working['Proj Own'] = team_working['Player'].map(maps_dict['Own_map']) / 100
|
367 |
+
team_working['Exposure'] = team_working['Freq']/(1000)
|
368 |
+
team_working['Edge'] = team_working['Exposure'] - team_working['Proj Own']
|
369 |
+
team_working['Team'] = team_working['Player'].map(maps_dict['Team_map'])
|
370 |
+
st.session_state.team_freq = team_working.copy()
|
371 |
+
|
372 |
+
if sim_site_var1 == 'Draftkings':
|
373 |
+
stack_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,9:10].values, return_counts=True)),
|
374 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
375 |
+
stack_working['Freq'] = stack_working['Freq'].astype(int)
|
376 |
+
stack_working['Exposure'] = stack_working['Freq']/(1000)
|
377 |
+
st.session_state.stack_freq = stack_working.copy()
|
378 |
+
|
379 |
+
with st.container():
|
380 |
+
if st.button("Reset Sim", key='reset_sim'):
|
381 |
+
for key in st.session_state.keys():
|
382 |
+
del st.session_state[key]
|
383 |
+
if 'player_freq' in st.session_state:
|
384 |
+
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
|
385 |
+
if player_split_var2 == 'Specific Players':
|
386 |
+
find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
|
387 |
+
elif player_split_var2 == 'Full Players':
|
388 |
+
find_var2 = st.session_state.player_freq.Player.values.tolist()
|
389 |
+
|
390 |
+
if player_split_var2 == 'Specific Players':
|
391 |
+
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
|
392 |
+
if player_split_var2 == 'Full Players':
|
393 |
+
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
|
394 |
+
if 'Sim_Winner_Display' in st.session_state:
|
395 |
+
st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
396 |
+
if 'Sim_Winner_Export' in st.session_state:
|
397 |
+
st.download_button(
|
398 |
+
label="Export Full Frame",
|
399 |
+
data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
|
400 |
+
file_name='LOL_consim_export.csv',
|
401 |
+
mime='text/csv',
|
402 |
+
)
|
403 |
+
|
404 |
+
with st.container():
|
405 |
+
tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8, tab9 = st.tabs(['Stack Exposures', 'Overall Exposures', 'CPT Exposures', 'TOP Exposures', 'JNG Exposures', 'MID Exposures', 'ADC Exposures', 'SUP Exposures', 'Team Exposures'])
|
406 |
+
|
407 |
+
with tab1:
|
408 |
+
if 'stack_freq' in st.session_state and st.session_state.stack_freq is not None:
|
409 |
+
|
410 |
+
st.dataframe(st.session_state.stack_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
|
411 |
+
st.download_button(
|
412 |
+
label="Export Exposures",
|
413 |
+
data=st.session_state.stack_freq.to_csv().encode('utf-8'),
|
414 |
+
file_name='stack_freq.csv',
|
415 |
+
mime='text/csv',
|
416 |
+
key='stack'
|
417 |
+
)
|
418 |
+
|
419 |
+
with tab2:
|
420 |
+
if 'player_freq' in st.session_state and st.session_state.player_freq is not None:
|
421 |
+
|
422 |
+
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
423 |
+
st.download_button(
|
424 |
+
label="Export Exposures",
|
425 |
+
data=st.session_state.player_freq.to_csv().encode('utf-8'),
|
426 |
+
file_name='player_freq_export.csv',
|
427 |
+
mime='text/csv',
|
428 |
+
key='overall'
|
429 |
+
)
|
430 |
+
|
431 |
+
with tab3:
|
432 |
+
if 'cpt_freq' in st.session_state and st.session_state.cpt_freq is not None:
|
433 |
+
|
434 |
+
st.dataframe(st.session_state.cpt_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width=True)
|
435 |
+
st.download_button(
|
436 |
+
label="Export Exposures",
|
437 |
+
data=st.session_state.cpt_freq.to_csv().encode('utf-8'),
|
438 |
+
file_name='cpt_freq.csv',
|
439 |
+
mime='text/csv',
|
440 |
+
key='cpt'
|
441 |
+
)
|
442 |
+
|
443 |
+
with tab4:
|
444 |
+
if 'top_freq' in st.session_state and st.session_state.top_freq is not None:
|
445 |
+
|
446 |
+
st.dataframe(st.session_state.top_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
447 |
+
st.download_button(
|
448 |
+
label="Export Exposures",
|
449 |
+
data=st.session_state.top_freq.to_csv().encode('utf-8'),
|
450 |
+
file_name='top_freq.csv',
|
451 |
+
mime='text/csv',
|
452 |
+
key='top'
|
453 |
+
)
|
454 |
+
|
455 |
+
with tab5:
|
456 |
+
if 'jng_freq' in st.session_state and st.session_state.jng_freq is not None:
|
457 |
+
|
458 |
+
st.dataframe(st.session_state.jng_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
459 |
+
st.download_button(
|
460 |
+
label="Export Exposures",
|
461 |
+
data=st.session_state.jng_freq.to_csv().encode('utf-8'),
|
462 |
+
file_name='jng_freq.csv',
|
463 |
+
mime='text/csv',
|
464 |
+
key='jng'
|
465 |
+
)
|
466 |
+
|
467 |
+
with tab6:
|
468 |
+
if 'mid_freq' in st.session_state and st.session_state.mid_freq is not None:
|
469 |
+
|
470 |
+
st.dataframe(st.session_state.mid_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
471 |
+
st.download_button(
|
472 |
+
label="Export Exposures",
|
473 |
+
data=st.session_state.mid_freq.to_csv().encode('utf-8'),
|
474 |
+
file_name='mid_freq.csv',
|
475 |
+
mime='text/csv',
|
476 |
+
key='mid'
|
477 |
+
)
|
478 |
+
|
479 |
+
with tab7:
|
480 |
+
if 'adc_freq' in st.session_state and st.session_state.adc_freq is not None:
|
481 |
+
|
482 |
+
st.dataframe(st.session_state.adc_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
483 |
+
st.download_button(
|
484 |
+
label="Export Exposures",
|
485 |
+
data=st.session_state.adc_freq.to_csv().encode('utf-8'),
|
486 |
+
file_name='adc_freq.csv',
|
487 |
+
mime='text/csv',
|
488 |
+
key='adc'
|
489 |
+
)
|
490 |
+
|
491 |
+
with tab8:
|
492 |
+
if 'sup_freq' in st.session_state and st.session_state.sup_freq is not None:
|
493 |
+
|
494 |
+
st.dataframe(st.session_state.sup_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
495 |
+
st.download_button(
|
496 |
+
label="Export Exposures",
|
497 |
+
data=st.session_state.sup_freq.to_csv().encode('utf-8'),
|
498 |
+
file_name='sup_freq.csv',
|
499 |
+
mime='text/csv',
|
500 |
+
key='sup'
|
501 |
+
)
|
502 |
+
|
503 |
+
with tab9:
|
504 |
+
if 'team_freq' in st.session_state and st.session_state.team_freq is not None:
|
505 |
+
|
506 |
+
st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
507 |
+
st.download_button(
|
508 |
+
label="Export Exposures",
|
509 |
+
data=st.session_state.team_freq.to_csv().encode('utf-8'),
|
510 |
+
file_name='team_freq.csv',
|
511 |
+
mime='text/csv',
|
512 |
+
key='team'
|
513 |
+
)
|
514 |
+
|
app.yaml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
runtime: python
|
2 |
+
env: flex
|
3 |
+
|
4 |
+
runtime_config:
|
5 |
+
python_version: 3
|
6 |
+
|
7 |
+
entrypoint: streamlit run streamlit-app.py --server.port $PORT
|
8 |
+
|
9 |
+
automatic_scaling:
|
10 |
+
max_num_instances: 1000
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
gspread
|
3 |
+
openpyxl
|
4 |
+
matplotlib
|
5 |
+
streamlit-aggrid
|
6 |
+
pulp
|
7 |
+
docker
|
8 |
+
plotly
|
9 |
+
scipy
|
10 |
+
pymongo
|