James McCool
Refactor date handling in init_conn function of app.py. Updated date range logic to use the current date for filtering, setting min_date to one year ago and max_date to one day ago. This change enhances the accuracy and relevance of game log retrieval for analysis.
24a1053
raw
history blame
14.2 kB
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import pymongo
import time
from datetime import datetime, timedelta
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["League_of_Legends_Database"]
current_date = datetime.now()
collection = db["gamelogs"]
max_date = current_date - timedelta(days=1)
min_date = current_date - timedelta(days=365)
team_names = collection.distinct("teamname")
player_names = collection.distinct("playername")
return db, team_names, player_names, min_date, max_date
db, team_names, player_names, min_date, max_date = init_conn()
display_formats = {'wKill%': '{:.2%}', 'wDeath%': '{:.2%}', 'wAssist%': '{:.2%}', 'lKill%': '{:.2%}', 'lDeath%': '{:.2%}', 'lAssist%': '{:.2%}'}
# Create sidebar container for options
with st.sidebar:
st.header("Team Analysis Options")
# Date filtering options
st.subheader("Date Range")
date_filter = st.radio(
"Select Date Range",
["Last Year", "Custom Range"]
)
if date_filter == "Last Year":
end_date = max_date
start_date = (end_date - timedelta(days=365))
else:
col1, col2 = st.columns(2)
with col1:
start_date = st.date_input(
"Start Date",
value=max_date.date() - timedelta(days=30),
min_value=min_date.date(),
max_value=max_date.date()
)
with col2:
end_date = st.date_input(
"End Date",
value=max_date.date(),
min_value=min_date.date(),
max_value=max_date.date()
)
selected_team = st.selectbox(
"Select Team",
options=team_names,
index=team_names.index("T1") if "T1" in team_names else 0
)
st.subheader("Prediction Settings")
win_loss = st.selectbox(
"Select Win/Loss",
options=["Win", "Loss"],
index=0
)
kill_prediction = st.number_input(
"Predicted Team Kills",
min_value=0,
max_value=100,
value=20
)
death_prediction = st.number_input(
"Predicted Team Deaths",
min_value=0,
max_value=100,
value=5
)
@st.cache_data(ttl = 60)
def init_team_data(team, win_loss, kill_prediction, death_prediction, start_date, end_date):
# Convert date objects to datetime strings in the correct format
start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S")
end_datetime = datetime.combine(end_date, datetime.max.time()).strftime("%Y-%m-%d %H:%M:%S")
collection = db["gamelogs"]
cursor = collection.find({"teamname": team, "date": {"$gte": start_datetime, "$lte": end_datetime}})
raw_display = pd.DataFrame(list(cursor))
calc_columns = ['kills', 'deaths', 'assists', 'total_cs']
league_win_stats = {}
league_loss_stats = {}
league_pos_win_stats = {}
league_pos_loss_stats = {}
Opponent_win_allowed_stats = {}
Opponent_loss_allowed_stats = {}
Opponent_pos_win_allowed_stats = {}
Opponent_pos_loss_allowed_stats = {}
playername_win_stats = {}
playername_loss_stats = {}
teamname_win_stats = {}
teamname_loss_stats = {}
for stats in calc_columns:
league_win_stats[stats] = raw_display[(raw_display['result'] == 1) & (raw_display['position'] != 'team')].groupby('league')[stats].mean().to_dict()
league_loss_stats[stats] = raw_display[(raw_display['result'] == 0) & (raw_display['position'] != 'team')].groupby('league')[stats].mean().to_dict()
Opponent_win_allowed_stats[stats] = raw_display[(raw_display['result'] == 1) & (raw_display['position'] != 'team')].groupby('Opponent')[stats].mean().to_dict()
Opponent_loss_allowed_stats[stats] = raw_display[(raw_display['result'] == 0) & (raw_display['position'] != 'team')].groupby('Opponent')[stats].mean().to_dict()
for stats in calc_columns:
league_pos_win_stats[stats] = {
league: group.groupby('position')[stats].mean().to_dict()
for league, group in raw_display[raw_display['result'] == 1].groupby('league')
}
league_pos_loss_stats[stats] = {
league: group.groupby('position')[stats].mean().to_dict()
for league, group in raw_display[raw_display['result'] == 0].groupby('league')
}
Opponent_pos_win_allowed_stats[stats] = {
opponent: group.groupby('position')[stats].mean().to_dict()
for opponent, group in raw_display[raw_display['result'] == 1].groupby('Opponent')
}
Opponent_pos_loss_allowed_stats[stats] = {
opponent: group.groupby('position')[stats].mean().to_dict()
for opponent, group in raw_display[raw_display['result'] == 0].groupby('Opponent')
}
for stats in calc_columns:
playername_win_stats[stats] = raw_display[raw_display['result'] == 1].groupby(['playername'])[stats].mean().to_dict()
playername_loss_stats[stats] = raw_display[raw_display['result'] == 0].groupby(['playername'])[stats].mean().to_dict()
teamname_win_stats[stats] = raw_display[(raw_display['result'] == 1) & (raw_display['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
teamname_loss_stats[stats] = raw_display[(raw_display['result'] == 0) & (raw_display['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
for stat in calc_columns:
column_name = f'league_avg_{stat}_win'
raw_display[column_name] = raw_display.apply(
lambda row: league_win_stats[stat].get(row['league'], 0),
axis=1
)
column_name = f'league_avg_{stat}_loss'
raw_display[column_name] = raw_display.apply(
lambda row: league_loss_stats[stat].get(row['league'], 0),
axis=1
)
column_name = f'Opponent_avg_{stat}_allowed_win'
raw_display[column_name] = raw_display.apply(
lambda row: Opponent_win_allowed_stats[stat].get(row['Opponent'], 0),
axis=1
)
column_name = f'Opponent_avg_{stat}_allowed_loss'
raw_display[column_name] = raw_display.apply(
lambda row: Opponent_loss_allowed_stats[stat].get(row['Opponent'], 0),
axis=1
)
column_name = f'league_pos_avg_{stat}_win'
raw_display[column_name] = raw_display.apply(
lambda row: league_pos_win_stats[stat].get(row['league'], {}).get(row['position'], 0),
axis=1
)
column_name = f'league_pos_avg_{stat}_loss'
raw_display[column_name] = raw_display.apply(
lambda row: league_pos_loss_stats[stat].get(row['league'], {}).get(row['position'], 0),
axis=1
)
column_name = f'Opponent_pos_avg_{stat}_allowed_win'
raw_display[column_name] = raw_display.apply(
lambda row: Opponent_pos_win_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0),
axis=1
)
column_name = f'Opponent_pos_avg_{stat}_allowed_loss'
raw_display[column_name] = raw_display.apply(
lambda row: Opponent_pos_loss_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0),
axis=1
)
column_name = f'playername_avg_{stat}_win'
raw_display[column_name] = raw_display.apply(
lambda row: playername_win_stats[stat].get(row['playername'], 0),
axis=1
)
column_name = f'playername_avg_{stat}_loss'
raw_display[column_name] = raw_display.apply(
lambda row: playername_loss_stats[stat].get(row['playername'], 0),
axis=1
)
column_name = f'teamname_avg_{stat}_win'
raw_display[column_name] = raw_display.apply(
lambda row: teamname_win_stats[stat].get(row['teamname'], 0),
axis=1
)
column_name = f'teamname_avg_{stat}_loss'
raw_display[column_name] = raw_display.apply(
lambda row: teamname_loss_stats[stat].get(row['teamname'], 0),
axis=1
)
raw_display['overall_win_kills_boost'] = raw_display['Opponent_avg_kills_allowed_win'] / raw_display['league_avg_kills_win']
raw_display['overall_win_deaths_boost'] = raw_display['Opponent_avg_deaths_allowed_win'] / raw_display['league_avg_deaths_win']
raw_display['overall_win_assists_boost'] = raw_display['Opponent_avg_assists_allowed_win'] / raw_display['league_avg_assists_win']
raw_display['overall_win_total_cs_boost'] = raw_display['Opponent_avg_total_cs_allowed_win'] / raw_display['league_avg_total_cs_win']
raw_display['overall_loss_kills_boost'] = raw_display['Opponent_avg_kills_allowed_loss'] / raw_display['league_avg_kills_loss']
raw_display['overall_loss_deaths_boost'] = raw_display['Opponent_avg_deaths_allowed_loss'] / raw_display['league_avg_deaths_loss']
raw_display['overall_loss_assists_boost'] = raw_display['Opponent_avg_assists_allowed_loss'] / raw_display['league_avg_assists_loss']
raw_display['overall_loss_total_cs_boost'] = raw_display['Opponent_avg_total_cs_allowed_loss'] / raw_display['league_avg_total_cs_loss']
raw_display['overall_win_kills_boost_pos'] = raw_display['Opponent_pos_avg_kills_allowed_win'] / raw_display['league_pos_avg_kills_win']
raw_display['overall_win_deaths_boost_pos'] = raw_display['Opponent_pos_avg_deaths_allowed_win'] / raw_display['league_pos_avg_deaths_win']
raw_display['overall_win_assists_boost_pos'] = raw_display['Opponent_pos_avg_assists_allowed_win'] / raw_display['league_pos_avg_assists_win']
raw_display['overall_win_total_cs_boost_pos'] = raw_display['Opponent_pos_avg_total_cs_allowed_win'] / raw_display['league_pos_avg_total_cs_win']
raw_display['overall_loss_kills_boost_pos'] = raw_display['Opponent_pos_avg_kills_allowed_loss'] / raw_display['league_pos_avg_kills_loss']
raw_display['overall_loss_deaths_boost_pos'] = raw_display['Opponent_pos_avg_deaths_allowed_loss'] / raw_display['league_pos_avg_deaths_loss']
raw_display['overall_loss_assists_boost_pos'] = raw_display['Opponent_pos_avg_assists_allowed_loss'] / raw_display['league_pos_avg_assists_loss']
raw_display['overall_loss_total_cs_boost_pos'] = raw_display['Opponent_pos_avg_total_cs_allowed_loss'] / raw_display['league_pos_avg_total_cs_loss']
raw_display['playername_avg_kill_share_win'] = raw_display['playername_avg_kills_win'] / raw_display['teamname_avg_kills_win']
raw_display['playername_avg_death_share_win'] = raw_display['playername_avg_deaths_win'] / raw_display['teamname_avg_deaths_win']
raw_display['playername_avg_assist_share_win'] = raw_display['playername_avg_assists_win'] / raw_display['teamname_avg_kills_win']
raw_display['playername_avg_cs_share_win'] = raw_display['playername_avg_total_cs_win'] / raw_display['teamname_avg_total_cs_win']
raw_display['playername_avg_kill_share_loss'] = raw_display['playername_avg_kills_loss'] / raw_display['teamname_avg_kills_loss']
raw_display['playername_avg_death_share_loss'] = raw_display['playername_avg_deaths_loss'] / raw_display['teamname_avg_deaths_loss']
raw_display['playername_avg_assist_share_loss'] = raw_display['playername_avg_assists_loss'] / raw_display['teamname_avg_kills_loss']
raw_display['playername_avg_cs_share_loss'] = raw_display['playername_avg_total_cs_loss'] / raw_display['teamname_avg_total_cs_loss']
raw_display = raw_display[['playername', 'teamname', 'playername_avg_kill_share_win', 'playername_avg_death_share_win', 'playername_avg_assist_share_win', 'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
raw_display = raw_display.rename(columns = {'playername_avg_kill_share_win': 'wKill%', 'playername_avg_death_share_win': 'wDeath%', 'playername_avg_assist_share_win': 'wAssist%', 'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%', 'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
team_data = raw_display.drop_duplicates(subset = ['playername'])
if win_loss == "Win":
team_data['Kill_Proj'] = team_data['wKill%'] * kill_prediction
team_data['Death_Proj'] = team_data['wDeath%'] * death_prediction
team_data['Assist_Proj'] = team_data['wAssist%'] * kill_prediction
team_data = team_data[['playername', 'teamname', 'wKill%', 'wDeath%', 'wAssist%', 'wCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']]
else:
team_data['Kill_Proj'] = team_data['lKill%'] * kill_prediction
team_data['Death_Proj'] = team_data['lDeath%'] * death_prediction
team_data['Assist_Proj'] = team_data['lAssist%'] * kill_prediction
team_data = team_data[['playername', 'teamname', 'lKill%', 'lDeath%', 'lAssist%', 'lCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']]
return team_data.dropna().reset_index(drop=True)
if st.button("Run"):
st.dataframe(init_team_data(selected_team, win_loss, kill_prediction, death_prediction, start_date, end_date).style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)