James McCool
Refactor app.py to improve data display and conditional rendering in simulation tabs. Added checks for session state data before rendering player summaries, overall simulations, individual game data, and opponent boosts. This change enhances user experience by ensuring that only available data is displayed, improving clarity and interaction during simulations.
9caa087
raw
history blame
47.5 kB
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import pymongo
import time
from datetime import datetime, timedelta
from scipy import stats
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["League_of_Legends_Database"]
current_date = datetime.now()
collection = db["gamelogs"]
max_date = current_date - timedelta(days=1)
min_date = current_date - timedelta(days=365)
team_names = collection.distinct("teamname")
player_names = collection.distinct("playername")
return db, team_names, player_names, min_date, max_date
db, team_names, player_names, min_date, max_date = init_conn()
display_formats = {'wKill%': '{:.2%}', 'wDeath%': '{:.2%}', 'wAssist%': '{:.2%}', 'lKill%': '{:.2%}', 'lDeath%': '{:.2%}', 'lAssist%': '{:.2%}'}
leagues = ['AL', 'CBLOL', 'GLL', 'HM', 'LCK', 'LCS', 'LEC', 'LFL', 'LLA', 'LPL', 'LPLOL', 'LVP SL', 'MSI', 'PCS', 'PGN', 'PRM', 'TCL', 'VCS', 'LTAN', 'LTAS',
'LLA', 'LPL', 'LPLOL', 'LVP SL', 'MSI', 'PCS', 'PGN', 'PRM', 'TCL', 'VCS', 'LTAN', 'LTAS']
# Create sidebar container for options
with st.sidebar:
st.header("Team Analysis Options")
# Date filtering options
st.subheader("Date Range")
date_filter = st.radio(
"Select Date Range",
["Last Year", "Custom Range"]
)
if date_filter == "Last Year":
end_date = max_date
start_date = (end_date - timedelta(days=365))
else:
col1, col2 = st.columns(2)
with col1:
start_date = st.date_input(
"Start Date",
value=max_date.date() - timedelta(days=30),
min_value=min_date.date(),
max_value=max_date.date()
)
with col2:
end_date = st.date_input(
"End Date",
value=max_date.date(),
min_value=min_date.date(),
max_value=max_date.date()
)
# Date filtering options
st.subheader("Data Type")
data_type = st.radio(
"Select Data Type",
["Team", "Player"]
)
col1, col2 = st.columns(2)
with col1:
if data_type == "Player":
selected_players = st.multiselect(
"Select Players",
options=player_names
)
else:
selected_team = st.selectbox(
"Select Team",
options=team_names,
index=team_names.index("T1") if "T1" in team_names else 0
)
with col2:
selected_opponent = st.selectbox(
"Select Opponent",
options=team_names,
index=team_names.index("T1") if "T1" in team_names else 0
)
st.subheader("Prediction Settings")
num_games = st.selectbox(
"How many games to simulate?",
options=["1", "2", "3", "4", "5"],
index=0
)
# Convert BO format to number of games
game_count = int(num_games[0])
# Create lists to store settings for each game
win_loss_settings = []
game_settings_list = []
kill_predictions = []
death_predictions = []
# Create a tab for each game
game_tabs = st.tabs([f"Game {i+1}" for i in range(game_count)])
for game_num, game_tab in enumerate(game_tabs, 1):
with game_tab:
win_loss_settings.append(st.selectbox(
f"Game {game_num} Win/Loss",
options=["Win", "Loss"],
index=0,
key=f"win_loss_{game_num}"
))
game_setting = st.selectbox(
f"Game {game_num} Prediction Type",
options=["Average", "Predict"],
index=0,
key=f"game_settings_{game_num}"
)
if game_setting == "Average":
kill_predictions.append(0)
death_predictions.append(0)
else:
col1, col2 = st.columns(2)
with col1:
kill_predictions.append(st.number_input(
f"Game {game_num} Predicted Team Kills",
min_value=1,
max_value=100,
value=20,
key=f"kills_{game_num}"
))
with col2:
death_predictions.append(st.number_input(
f"Game {game_num} Predicted Team Deaths",
min_value=1,
max_value=100,
value=5,
key=f"deaths_{game_num}"
))
@st.cache_data(ttl = 60)
def simulate_stats(row, num_sims=1000):
"""Simulate stats using normal distribution"""
# Using coefficient of variation of 0.3 to generate reasonable standard deviations
cv = 0.3
percentiles = [10, 25, 50, 75, 90]
results = {}
for stat in ['Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']:
mean = row[stat]
std = mean * cv # Using coefficient of variation to determine std
sims = stats.norm.rvs(loc=mean, scale=std, size=num_sims)
# Ensure no negative values
sims = np.maximum(sims, 0)
results[stat] = np.percentile(sims, percentiles)
return pd.Series(results)
@st.cache_data(ttl = 60)
def init_team_data(game_count, team, opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date):
game_count = game_count
overall_team_data = pd.DataFrame(columns = ['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj'])
# Convert date objects to datetime strings in the correct format
start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S")
end_datetime = datetime.combine(end_date, datetime.max.time()).strftime("%Y-%m-%d %H:%M:%S")
collection = db["gamelogs"]
cursor = collection.find({"teamname": team, "date": {"$gte": start_datetime, "$lte": end_datetime}})
raw_display = pd.DataFrame(list(cursor))
cursor = collection.find({"date": {"$gte": start_datetime, "$lte": end_datetime}})
raw_opponent = pd.DataFrame(list(cursor))
tables_to_loop = [raw_display, raw_opponent]
for loop in range(len(tables_to_loop)):
tables = tables_to_loop[loop]
calc_columns = ['kills', 'deaths', 'assists', 'total_cs']
league_pos_win_stats = {}
league_pos_loss_stats = {}
Opponent_pos_win_allowed_stats = {}
Opponent_pos_loss_allowed_stats = {}
playername_win_stats = {}
playername_loss_stats = {}
teamname_win_stats = {}
teamname_loss_stats = {}
if loop == 0:
for stats in calc_columns:
playername_win_stats[stats] = tables[tables['result'] == 1].groupby(['playername'])[stats].mean().to_dict()
playername_loss_stats[stats] = tables[tables['result'] == 0].groupby(['playername'])[stats].mean().to_dict()
teamname_win_stats[stats] = tables[(tables['result'] == 1) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
teamname_loss_stats[stats] = tables[(tables['result'] == 0) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
for stat in calc_columns:
column_name = f'playername_avg_{stat}_win'
tables[column_name] = tables.apply(
lambda row: playername_win_stats[stat].get(row['playername'], 0),
axis=1
)
column_name = f'playername_avg_{stat}_loss'
tables[column_name] = tables.apply(
lambda row: playername_loss_stats[stat].get(row['playername'], 0),
axis=1
)
column_name = f'teamname_avg_{stat}_win'
tables[column_name] = tables.apply(
lambda row: teamname_win_stats[stat].get(row['teamname'], 0),
axis=1
)
column_name = f'teamname_avg_{stat}_loss'
tables[column_name] = tables.apply(
lambda row: teamname_loss_stats[stat].get(row['teamname'], 0),
axis=1
)
tables['playername_avg_kill_share_win'] = tables['playername_avg_kills_win'] / tables['teamname_avg_kills_win']
tables['playername_avg_death_share_win'] = tables['playername_avg_deaths_win'] / tables['teamname_avg_deaths_win']
tables['playername_avg_assist_share_win'] = tables['playername_avg_assists_win'] / tables['teamname_avg_kills_win']
tables['playername_avg_cs_share_win'] = tables['playername_avg_total_cs_win'] / tables['teamname_avg_total_cs_win']
tables['playername_avg_kill_share_loss'] = tables['playername_avg_kills_loss'] / tables['teamname_avg_kills_loss']
tables['playername_avg_death_share_loss'] = tables['playername_avg_deaths_loss'] / tables['teamname_avg_deaths_loss']
tables['playername_avg_assist_share_loss'] = tables['playername_avg_assists_loss'] / tables['teamname_avg_kills_loss']
tables['playername_avg_cs_share_loss'] = tables['playername_avg_total_cs_loss'] / tables['teamname_avg_total_cs_loss']
player_tables = tables
else:
for stats in calc_columns:
league_pos_win_stats[stats] = {
league: group.groupby('position')[stats].mean().to_dict()
for league, group in tables[tables['result'] == 1].groupby('league')
}
league_pos_loss_stats[stats] = {
league: group.groupby('position')[stats].mean().to_dict()
for league, group in tables[tables['result'] == 0].groupby('league')
}
Opponent_pos_win_allowed_stats[stats] = {
opponent: group.groupby('position')[stats].mean().to_dict()
for opponent, group in tables[tables['result'] == 1].groupby('Opponent')
}
Opponent_pos_loss_allowed_stats[stats] = {
opponent: group.groupby('position')[stats].mean().to_dict()
for opponent, group in tables[tables['result'] == 0].groupby('Opponent')
}
for stat in calc_columns:
column_name = f'league_pos_avg_{stat}_win'
tables[column_name] = tables.apply(
lambda row: league_pos_win_stats[stat].get(row['league'], {}).get(row['position'], 0),
axis=1
)
column_name = f'league_pos_avg_{stat}_loss'
tables[column_name] = tables.apply(
lambda row: league_pos_loss_stats[stat].get(row['league'], {}).get(row['position'], 0),
axis=1
)
column_name = f'Opponent_pos_avg_{stat}_allowed_win'
tables[column_name] = tables.apply(
lambda row: Opponent_pos_win_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0),
axis=1
)
column_name = f'Opponent_pos_avg_{stat}_allowed_loss'
tables[column_name] = tables.apply(
lambda row: Opponent_pos_loss_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0),
axis=1
)
tables = tables[tables['Opponent'] == opponent]
tables['overall_win_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_win'] / tables['league_pos_avg_kills_win']
tables['overall_win_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_win'] / tables['league_pos_avg_deaths_win']
tables['overall_win_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_win'] / tables['league_pos_avg_assists_win']
tables['overall_win_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_win'] / tables['league_pos_avg_total_cs_win']
tables['overall_loss_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_loss'] / tables['league_pos_avg_kills_loss']
tables['overall_loss_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_loss'] / tables['league_pos_avg_deaths_loss']
tables['overall_loss_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_loss'] / tables['league_pos_avg_assists_loss']
tables['overall_loss_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_loss'] / tables['league_pos_avg_total_cs_loss']
opp_tables = tables
opp_pos_kills_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_kills_boost_pos']))
opp_pos_deaths_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_deaths_boost_pos']))
opp_pos_assists_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_assists_boost_pos']))
opp_pos_cs_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_total_cs_boost_pos']))
opp_pos_kills_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_kills_boost_pos']))
opp_pos_deaths_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_deaths_boost_pos']))
opp_pos_assists_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_assists_boost_pos']))
opp_pos_cs_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_total_cs_boost_pos']))
opp_boosts = pd.DataFrame({
'opp_pos_kills_boost_win': opp_pos_kills_boost_win,
'opp_pos_deaths_boost_win': opp_pos_deaths_boost_win,
'opp_pos_assists_boost_win': opp_pos_assists_boost_win,
'opp_pos_cs_boost_win': opp_pos_cs_boost_win,
'opp_pos_kills_boost_loss': opp_pos_kills_boost_loss,
'opp_pos_deaths_boost_loss': opp_pos_deaths_boost_loss,
'opp_pos_assists_boost_loss': opp_pos_assists_boost_loss,
'opp_pos_cs_boost_loss': opp_pos_cs_boost_loss
}).set_index(pd.Index(list(opp_pos_kills_boost_win.keys()), name='position'))
results_dict = {}
for game in range(game_count):
if kill_predictions[game] > 0:
working_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kill_share_win', 'playername_avg_death_share_win','playername_avg_assist_share_win',
'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
working_tables = working_tables.rename(columns = {'playername_avg_kill_share_win': 'wKill%', 'playername_avg_death_share_win': 'wDeath%', 'playername_avg_assist_share_win': 'wAssist%',
'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%',
'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
team_data = working_tables.drop_duplicates(subset = ['playername'])
team_data = working_tables.drop_duplicates(subset = ['position'])
if win_loss_settings[game] == "Win":
team_data['Kill_Proj'] = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1) * kill_predictions[game]
team_data['Death_Proj'] = team_data.apply(lambda row: row['wDeath%'] * opp_pos_deaths_boost_win.get(row['position'], 1), axis=1) * death_predictions[game]
# Calculate assists and scale them to not exceed total kills
raw_assists = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1) * kill_predictions[game]
assist_scale = min(1.0, kill_predictions[game] / raw_assists.sum()) if raw_assists.sum() > 0 else 1.0
team_data['Assist_Proj'] = raw_assists * assist_scale
team_data['CS_Proj'] = team_data.apply(lambda row: row['wCS'] * opp_pos_cs_boost_win.get(row['position'], 1), axis=1)
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
else:
team_data['Kill_Proj'] = team_data.apply(lambda row: row['lKill%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1) * kill_predictions[game]
team_data['Death_Proj'] = team_data.apply(lambda row: row['lDeath%'] * opp_pos_deaths_boost_loss.get(row['position'], 1), axis=1) * death_predictions[game]
# Calculate assists and scale them to not exceed total kills
raw_assists = team_data.apply(lambda row: row['lAssist%'] * opp_pos_assists_boost_loss.get(row['position'], 1), axis=1) * kill_predictions[game]
assist_scale = min(1.0, kill_predictions[game] / raw_assists.sum()) if raw_assists.sum() > 0 else 1.0
team_data['Assist_Proj'] = raw_assists * assist_scale
team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
else:
working_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kills_win', 'playername_avg_deaths_win', 'playername_avg_assists_win', 'playername_avg_total_cs_win',
'playername_avg_kills_loss', 'playername_avg_deaths_loss', 'playername_avg_assists_loss', 'playername_avg_total_cs_loss']]
working_tables = working_tables.rename(columns = {'playername_avg_kills_win': 'wKill%', 'playername_avg_deaths_win': 'wDeath%', 'playername_avg_assists_win': 'wAssist%',
'playername_avg_total_cs_win': 'wCS', 'playername_avg_kills_loss': 'lKill%', 'playername_avg_deaths_loss': 'lDeath%',
'playername_avg_assists_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
team_data = working_tables.drop_duplicates(subset = ['playername'])
team_data = working_tables.drop_duplicates(subset = ['position'])
if win_loss_settings[game] == "Win":
team_data['Kill_Proj'] = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1)
team_data['Death_Proj'] = team_data.apply(lambda row: row['wDeath%'] * opp_pos_deaths_boost_win.get(row['position'], 1), axis=1)
raw_assists = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1) * team_data['Kill_Proj'].sum()
assist_scale = min(1.0, team_data['Kill_Proj'].sum() / raw_assists.sum()) if raw_assists.sum() > 0 else 1.0
team_data['Assist_Proj'] = raw_assists * assist_scale
team_data['CS_Proj'] = team_data.apply(lambda row: row['wCS'] * opp_pos_cs_boost_win.get(row['position'], 1), axis=1)
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
else:
team_data['Kill_Proj'] = team_data.apply(lambda row: row['lKill%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1)
team_data['Death_Proj'] = team_data.apply(lambda row: row['lDeath%'] * opp_pos_deaths_boost_loss.get(row['position'], 1), axis=1)
raw_assists = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1) * team_data['Kill_Proj'].sum()
assist_scale = min(1.0, team_data['Kill_Proj'].sum() / raw_assists.sum()) if raw_assists.sum() > 0 else 1.0
team_data['Assist_Proj'] = raw_assists * assist_scale
team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
results_dict[f'game {game + 1}'] = team_data.dropna()
team_data['playername'] = team_data['playername'] + f' game {game + 1}'
overall_team_data = pd.concat([overall_team_data, team_data])
return overall_team_data.dropna().set_index('playername'), opp_boosts, results_dict
@st.cache_data(ttl = 60)
def init_player_data(game_count, players, opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date):
game_count = game_count
overall_team_data = pd.DataFrame(columns = ['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj'])
# Convert date objects to datetime strings in the correct format
start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S")
end_datetime = datetime.combine(end_date, datetime.max.time()).strftime("%Y-%m-%d %H:%M:%S")
collection = db["gamelogs"]
cursor = collection.find({"playername": {"$in": players}, "date": {"$gte": start_datetime, "$lte": end_datetime}})
raw_display = pd.DataFrame(list(cursor))
teams = raw_display['teamname'].unique().tolist()
cursor = collection.find({"teamname": {"$in": teams}, "date": {"$gte": start_datetime, "$lte": end_datetime}})
raw_team = pd.DataFrame(list(cursor))
cursor = collection.find({"date": {"$gte": start_datetime, "$lte": end_datetime}})
raw_opponent = pd.DataFrame(list(cursor))
tables_to_loop = [raw_display, raw_opponent, raw_team]
for loop in range(len(tables_to_loop)):
tables = tables_to_loop[loop]
calc_columns = ['kills', 'deaths', 'assists', 'total_cs']
league_pos_win_stats = {}
league_pos_loss_stats = {}
Opponent_pos_win_allowed_stats = {}
Opponent_pos_loss_allowed_stats = {}
playername_win_stats = {}
playername_loss_stats = {}
teamname_win_stats = {}
teamname_loss_stats = {}
if loop == 0:
for stats in calc_columns:
playername_win_stats[stats] = tables[tables['result'] == 1].groupby(['playername'])[stats].mean().to_dict()
playername_loss_stats[stats] = tables[tables['result'] == 0].groupby(['playername'])[stats].mean().to_dict()
teamname_win_stats[stats] = tables[(tables['result'] == 1) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
teamname_loss_stats[stats] = tables[(tables['result'] == 0) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict()
for stat in calc_columns:
column_name = f'playername_avg_{stat}_win'
tables[column_name] = tables.apply(
lambda row: playername_win_stats[stat].get(row['playername'], 0),
axis=1
)
column_name = f'playername_avg_{stat}_loss'
tables[column_name] = tables.apply(
lambda row: playername_loss_stats[stat].get(row['playername'], 0),
axis=1
)
if loop == 2:
column_name = f'teamname_avg_{stat}_win'
tables[column_name] = tables.apply(
lambda row: teamname_win_stats[stat].get(row['teamname'], 0),
axis=1
)
column_name = f'teamname_avg_{stat}_loss'
tables[column_name] = tables.apply(
lambda row: teamname_loss_stats[stat].get(row['teamname'], 0),
axis=1
)
tables['playername_avg_kill_share_win'] = tables['playername_avg_kills_win'] / tables['teamname_avg_kills_win']
tables['playername_avg_death_share_win'] = tables['playername_avg_deaths_win'] / tables['teamname_avg_deaths_win']
tables['playername_avg_assist_share_win'] = tables['playername_avg_assists_win'] / tables['teamname_avg_kills_win']
tables['playername_avg_cs_share_win'] = tables['playername_avg_total_cs_win'] / tables['teamname_avg_total_cs_win']
tables['playername_avg_kill_share_loss'] = tables['playername_avg_kills_loss'] / tables['teamname_avg_kills_loss']
tables['playername_avg_death_share_loss'] = tables['playername_avg_deaths_loss'] / tables['teamname_avg_deaths_loss']
tables['playername_avg_assist_share_loss'] = tables['playername_avg_assists_loss'] / tables['teamname_avg_kills_loss']
tables['playername_avg_cs_share_loss'] = tables['playername_avg_total_cs_loss'] / tables['teamname_avg_total_cs_loss']
player_tables = tables
else:
for stats in calc_columns:
league_pos_win_stats[stats] = {
league: group.groupby('position')[stats].mean().to_dict()
for league, group in tables[tables['result'] == 1].groupby('league')
}
league_pos_loss_stats[stats] = {
league: group.groupby('position')[stats].mean().to_dict()
for league, group in tables[tables['result'] == 0].groupby('league')
}
Opponent_pos_win_allowed_stats[stats] = {
opponent: group.groupby('position')[stats].mean().to_dict()
for opponent, group in tables[tables['result'] == 1].groupby('Opponent')
}
Opponent_pos_loss_allowed_stats[stats] = {
opponent: group.groupby('position')[stats].mean().to_dict()
for opponent, group in tables[tables['result'] == 0].groupby('Opponent')
}
for stat in calc_columns:
column_name = f'league_pos_avg_{stat}_win'
tables[column_name] = tables.apply(
lambda row: league_pos_win_stats[stat].get(row['league'], {}).get(row['position'], 0),
axis=1
)
column_name = f'league_pos_avg_{stat}_loss'
tables[column_name] = tables.apply(
lambda row: league_pos_loss_stats[stat].get(row['league'], {}).get(row['position'], 0),
axis=1
)
column_name = f'Opponent_pos_avg_{stat}_allowed_win'
tables[column_name] = tables.apply(
lambda row: Opponent_pos_win_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0),
axis=1
)
column_name = f'Opponent_pos_avg_{stat}_allowed_loss'
tables[column_name] = tables.apply(
lambda row: Opponent_pos_loss_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0),
axis=1
)
tables = tables[tables['Opponent'] == opponent]
tables['overall_win_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_win'] / tables['league_pos_avg_kills_win']
tables['overall_win_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_win'] / tables['league_pos_avg_deaths_win']
tables['overall_win_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_win'] / tables['league_pos_avg_assists_win']
tables['overall_win_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_win'] / tables['league_pos_avg_total_cs_win']
tables['overall_loss_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_loss'] / tables['league_pos_avg_kills_loss']
tables['overall_loss_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_loss'] / tables['league_pos_avg_deaths_loss']
tables['overall_loss_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_loss'] / tables['league_pos_avg_assists_loss']
tables['overall_loss_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_loss'] / tables['league_pos_avg_total_cs_loss']
opp_tables = tables
opp_pos_kills_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_kills_boost_pos']))
opp_pos_deaths_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_deaths_boost_pos']))
opp_pos_assists_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_assists_boost_pos']))
opp_pos_cs_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_total_cs_boost_pos']))
opp_pos_kills_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_kills_boost_pos']))
opp_pos_deaths_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_deaths_boost_pos']))
opp_pos_assists_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_assists_boost_pos']))
opp_pos_cs_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_total_cs_boost_pos']))
opp_boosts = pd.DataFrame({
'opp_pos_kills_boost_win': opp_pos_kills_boost_win,
'opp_pos_deaths_boost_win': opp_pos_deaths_boost_win,
'opp_pos_assists_boost_win': opp_pos_assists_boost_win,
'opp_pos_cs_boost_win': opp_pos_cs_boost_win,
'opp_pos_kills_boost_loss': opp_pos_kills_boost_loss,
'opp_pos_deaths_boost_loss': opp_pos_deaths_boost_loss,
'opp_pos_assists_boost_loss': opp_pos_assists_boost_loss,
'opp_pos_cs_boost_loss': opp_pos_cs_boost_loss
}).set_index(pd.Index(list(opp_pos_kills_boost_win.keys()), name='position'))
results_dict = {}
for game in range(game_count):
if kill_predictions[game] > 0:
working_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kill_share_win', 'playername_avg_death_share_win','playername_avg_assist_share_win',
'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']]
working_tables = working_tables.rename(columns = {'playername_avg_kill_share_win': 'wKill%', 'playername_avg_death_share_win': 'wDeath%', 'playername_avg_assist_share_win': 'wAssist%',
'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%',
'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
team_data = working_tables.drop_duplicates(subset = ['playername'])
if win_loss_settings[game] == "Win":
team_data['Kill_Proj'] = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1) * kill_predictions[game]
team_data['Death_Proj'] = team_data.apply(lambda row: row['wDeath%'] * opp_pos_deaths_boost_win.get(row['position'], 1), axis=1) * death_predictions[game]
# Calculate assists and scale them to not exceed total kills
raw_assists = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1) * kill_predictions[game]
assist_scale = min(1.0, kill_predictions[game] / raw_assists.sum()) if raw_assists.sum() > 0 else 1.0
team_data['Assist_Proj'] = raw_assists * assist_scale
team_data['CS_Proj'] = team_data.apply(lambda row: row['wCS'] * opp_pos_cs_boost_win.get(row['position'], 1), axis=1)
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
else:
team_data['Kill_Proj'] = team_data.apply(lambda row: row['lKill%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1) * kill_predictions[game]
team_data['Death_Proj'] = team_data.apply(lambda row: row['lDeath%'] * opp_pos_deaths_boost_loss.get(row['position'], 1), axis=1) * death_predictions[game]
# Calculate assists and scale them to not exceed total kills
raw_assists = team_data.apply(lambda row: row['lAssist%'] * opp_pos_assists_boost_loss.get(row['position'], 1), axis=1) * kill_predictions[game]
assist_scale = min(1.0, kill_predictions[game] / raw_assists.sum()) if raw_assists.sum() > 0 else 1.0
team_data['Assist_Proj'] = raw_assists * assist_scale
team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
else:
working_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kills_win', 'playername_avg_deaths_win', 'playername_avg_assists_win', 'playername_avg_total_cs_win',
'playername_avg_kills_loss', 'playername_avg_deaths_loss', 'playername_avg_assists_loss', 'playername_avg_total_cs_loss']]
working_tables = working_tables.rename(columns = {'playername_avg_kills_win': 'wKill%', 'playername_avg_deaths_win': 'wDeath%', 'playername_avg_assists_win': 'wAssist%',
'playername_avg_total_cs_win': 'wCS', 'playername_avg_kills_loss': 'lKill%', 'playername_avg_deaths_loss': 'lDeath%',
'playername_avg_assists_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'})
team_data = working_tables.drop_duplicates(subset = ['playername'])
if win_loss_settings[game] == "Win":
team_data['Kill_Proj'] = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1)
team_data['Death_Proj'] = team_data.apply(lambda row: row['wDeath%'] * opp_pos_deaths_boost_win.get(row['position'], 1), axis=1)
raw_assists = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1) * team_data['Kill_Proj'].sum()
assist_scale = min(1.0, team_data['Kill_Proj'].sum() / raw_assists.sum()) if raw_assists.sum() > 0 else 1.0
team_data['Assist_Proj'] = raw_assists * assist_scale
team_data['CS_Proj'] = team_data.apply(lambda row: row['wCS'] * opp_pos_cs_boost_win.get(row['position'], 1), axis=1)
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
else:
team_data['Kill_Proj'] = team_data.apply(lambda row: row['lKill%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1)
team_data['Death_Proj'] = team_data.apply(lambda row: row['lDeath%'] * opp_pos_deaths_boost_loss.get(row['position'], 1), axis=1)
raw_assists = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1) * team_data['Kill_Proj'].sum()
assist_scale = min(1.0, team_data['Kill_Proj'].sum() / raw_assists.sum()) if raw_assists.sum() > 0 else 1.0
team_data['Assist_Proj'] = raw_assists * assist_scale
team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1)
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']]
results_dict[f'game {game + 1}'] = team_data.dropna()
team_data['playername'] = team_data['playername'] + f' game {game + 1}'
overall_team_data = pd.concat([overall_team_data, team_data])
return overall_team_data.dropna().set_index('playername'), opp_boosts, results_dict
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
if st.button("Run"):
if data_type == "Team":
st.session_state.team_data, st.session_state.opp_boost, st.session_state.results_dict = init_team_data(game_count, selected_team, selected_opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date)
else:
st.session_state.team_data, st.session_state.opp_boost, st.session_state.results_dict = init_player_data(game_count, selected_players, selected_opponent, win_loss_settings, kill_predictions, death_predictions, start_date, end_date)
st.session_state.player_summary = pd.DataFrame()
for game_num in range(game_count):
st.session_state.game_df = st.session_state.results_dict[f'game {game_num + 1}'] # Use correct dictionary key format
# Remove 'game X' from playernames if present
st.session_state.clean_df = st.session_state.game_df.copy()
st.session_state.clean_df['playername'] = st.session_state.clean_df['playername'].str.split(' game ').str[0]
if st.session_state.player_summary.empty:
st.session_state.player_summary = st.session_state.clean_df
else:
# Add the stats to existing players
for col in ['Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']:
st.session_state.player_summary[col] += st.session_state.clean_df[col]
# Update teamname and position if needed
st.session_state.player_summary['teamname'].update(st.session_state.clean_df['teamname'])
st.session_state.player_summary['position'].update(st.session_state.clean_df['position'])
st.session_state.player_summary = st.session_state.player_summary.set_index('playername')
# Create simulated percentiles
individual_sim_results = []
for idx, row in st.session_state.team_data.iterrows():
percentiles = simulate_stats(row)
individual_sim_results.append({
'Player': idx,
'Position': row['position'],
'Stat': 'Kills',
'10%': percentiles['Kill_Proj'][0],
'25%': percentiles['Kill_Proj'][1],
'50%': percentiles['Kill_Proj'][2],
'75%': percentiles['Kill_Proj'][3],
'90%': percentiles['Kill_Proj'][4]
})
# Repeat for other stats
for stat, name in [('Death_Proj', 'Deaths'), ('Assist_Proj', 'Assists'), ('CS_Proj', 'CS')]:
individual_sim_results.append({
'Player': idx,
'Position': row['position'],
'Stat': name,
'10%': percentiles[stat][0],
'25%': percentiles[stat][1],
'50%': percentiles[stat][2],
'75%': percentiles[stat][3],
'90%': percentiles[stat][4]
})
st.session_state.sim_df = pd.DataFrame(individual_sim_results)
# Create simulated percentiles
overall_sim_results = []
for idx, row in st.session_state.player_summary.iterrows():
percentiles = simulate_stats(row)
overall_sim_results.append({
'Player': idx,
'Position': row['position'],
'Stat': 'Kills',
'10%': percentiles['Kill_Proj'][0],
'25%': percentiles['Kill_Proj'][1],
'50%': percentiles['Kill_Proj'][2],
'75%': percentiles['Kill_Proj'][3],
'90%': percentiles['Kill_Proj'][4]
})
# Repeat for other stats
for stat, name in [('Death_Proj', 'Deaths'), ('Assist_Proj', 'Assists'), ('CS_Proj', 'CS')]:
overall_sim_results.append({
'Player': idx,
'Position': row['position'],
'Stat': name,
'10%': percentiles[stat][0],
'25%': percentiles[stat][1],
'50%': percentiles[stat][2],
'75%': percentiles[stat][3],
'90%': percentiles[stat][4]
})
st.session_state.overall_sim_df = pd.DataFrame(overall_sim_results)
st.session_state.overall_sim_df = st.session_state.overall_sim_df.drop_duplicates(subset = ['Player', 'Stat'])
tab1, tab2, tab3 = st.tabs(["Overall Data", "Individual Game Data", "Opponent Data"])
with tab1:
if st.session_state.player_summary is not None:
st.subheader("Full Match Data")
st.dataframe(st.session_state.player_summary.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)
if st.session_state.overall_sim_df is not None:
st.subheader("Overall Simulations")
stat_tabs = st.tabs(["Kills", "Deaths", "Assists", "CS"])
for stat, tab in zip(["Kills", "Deaths", "Assists", "CS"], stat_tabs):
with tab:
st.session_state.stat_data = st.session_state.overall_sim_df[st.session_state.overall_sim_df['Stat'] == stat].copy()
st.session_state.stat_data = st.session_state.stat_data.set_index('Player')[['Position', '10%', '25%', '50%', '75%', '90%']]
st.dataframe(
st.session_state.stat_data.style.format(precision=2).background_gradient(axis=0).background_gradient(cmap='RdYlGn'),
use_container_width=True
)
st.subheader("Prop Check")
col1, col2 = st.columns([2, 8])
with col1:
prop_var = st.number_input("Enter Prop Value", min_value=0.0, max_value=100.0, value=4.5, step=0.5)
stat_choice = st.selectbox("Select Stat", ["Kills", "Deaths", "Assists", "CS"])
with col2:
# Filter data for selected stat
st.session_state.stat_data = st.session_state.overall_sim_df[st.session_state.overall_sim_df['Stat'] == stat_choice].copy()
# Calculate mean and standard deviation using percentiles
# Using the fact that in a normal distribution:
# 10th percentile is -1.28 SD from mean
# 90th percentile is 1.28 SD from mean
st.session_state.stat_data['mean'] = (st.session_state.stat_data['90%'] + st.session_state.stat_data['10%']) / 2
st.session_state.stat_data['std'] = (st.session_state.stat_data['90%'] - st.session_state.stat_data['10%']) / (2 * 1.28)
# Calculate probabilities
st.session_state.stat_data['over_prob'] = st.session_state.stat_data.apply(
lambda x: 1 - stats.norm.cdf(prop_var, x['mean'], x['std']), axis=1
)
st.session_state.stat_data['under_prob'] = st.session_state.stat_data.apply(
lambda x: stats.norm.cdf(prop_var, x['mean'], x['std']), axis=1
)
# Prepare display dataframe
st.session_state.display_df = st.session_state.stat_data[['Player', 'Position', 'over_prob', 'under_prob']].copy()
st.session_state.display_df['Over %'] = (st.session_state.display_df['over_prob'] * 100).round(1)
st.session_state.display_df['Under %'] = (st.session_state.display_df['under_prob'] * 100).round(1)
# Display results
st.dataframe(
st.session_state.display_df[['Player', 'Position', 'Over %', 'Under %']]
.set_index('Player')
.style.background_gradient(subset=['Over %', 'Under %'], cmap='RdYlGn'),
use_container_width=True
)
with tab2:
if st.session_state.team_data is not None:
st.subheader("Individual Game Data")
st.dataframe(st.session_state.team_data.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True)
if st.session_state.sim_df is not None:
st.subheader("Individual Game Simulations")
unique_players = st.session_state.sim_df['Player'].unique().tolist()
player_tabs = st.tabs(unique_players)
for player, tab in zip(unique_players, player_tabs):
with tab:
player_data = st.session_state.sim_df[st.session_state.sim_df['Player'] == player]
player_data = player_data.set_index('Stat')
st.dataframe(
player_data[['10%', '25%', '50%', '75%', '90%']]
.style.format(precision=2),
use_container_width=True
)
with tab3:
if st.session_state.opp_boost is not None:
st.subheader("Opponent Boosts")
st.dataframe(st.session_state.opp_boost.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)