Spaces:
Running
Running
James McCool
Update date input defaults in app.py to enhance user experience. Changed the start date to 30 days prior to the maximum date and ensured proper date formatting for both start and end date inputs. This improves the clarity and usability of date selection for users.
a88c238
import streamlit as st | |
st.set_page_config(layout="wide") | |
import numpy as np | |
import pandas as pd | |
import pymongo | |
import time | |
from datetime import datetime, timedelta | |
def init_conn(): | |
uri = st.secrets['mongo_uri'] | |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) | |
db = client["League_of_Legends_Database"] | |
collection = db["gamelogs"] | |
min_date = datetime.strptime(collection.find_one({}, sort=[("date", 1)])["date"], "%Y-%m-%d %H:%M:%S") | |
max_date = datetime.strptime(collection.find_one({}, sort=[("date", -1)])["date"], "%Y-%m-%d %H:%M:%S") | |
team_names = collection.distinct("teamname") | |
player_names = collection.distinct("playername") | |
return db, team_names, player_names, min_date, max_date | |
db, team_names, player_names, min_date, max_date = init_conn() | |
display_formats = {'wKill%': '{:.2%}', 'wDeath%': '{:.2%}', 'wAssist%': '{:.2%}', 'lKill%': '{:.2%}', 'lDeath%': '{:.2%}', 'lAssist%': '{:.2%}'} | |
# Create sidebar container for options | |
with st.sidebar: | |
st.header("Team Analysis Options") | |
# Date filtering options | |
st.subheader("Date Range") | |
date_filter = st.radio( | |
"Select Date Range", | |
["Last Year", "Custom Range"] | |
) | |
if date_filter == "Last Year": | |
end_date = max_date | |
start_date = (end_date - timedelta(days=365)) | |
else: | |
col1, col2 = st.columns(2) | |
with col1: | |
start_date = st.date_input( | |
"Start Date", | |
value=max_date.date() - timedelta(days=30), | |
min_value=min_date.date(), | |
max_value=max_date.date() | |
) | |
with col2: | |
end_date = st.date_input( | |
"End Date", | |
value=max_date.date(), | |
min_value=min_date.date(), | |
max_value=max_date.date() | |
) | |
selected_team = st.selectbox( | |
"Select Team", | |
options=team_names, | |
index=team_names.index("T1") if "T1" in team_names else 0 | |
) | |
st.subheader("Prediction Settings") | |
win_loss = st.selectbox( | |
"Select Win/Loss", | |
options=["Win", "Loss"], | |
index=0 | |
) | |
kill_prediction = st.number_input( | |
"Predicted Team Kills", | |
min_value=0, | |
max_value=100, | |
value=20 | |
) | |
death_prediction = st.number_input( | |
"Predicted Team Deaths", | |
min_value=0, | |
max_value=100, | |
value=5 | |
) | |
def init_team_data(team, win_loss, kill_prediction, death_prediction, start_date, end_date): | |
# Convert date objects to datetime strings in the correct format | |
start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S") | |
end_datetime = datetime.combine(end_date, datetime.max.time()).strftime("%Y-%m-%d %H:%M:%S") | |
collection = db["gamelogs"] | |
cursor = collection.find({"teamname": team, "date": {"$gte": start_datetime, "$lte": end_datetime}}) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['playername', 'teamname', 'playername_avg_kill_share_win', 'playername_avg_death_share_win', 'playername_avg_assist_share_win', 'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']] | |
raw_display = raw_display.rename(columns = {'playername_avg_kill_share_win': 'wKill%', 'playername_avg_death_share_win': 'wDeath%', 'playername_avg_assist_share_win': 'wAssist%', 'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%', 'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'}) | |
team_data = raw_display.drop_duplicates(subset = ['playername']) | |
if win_loss == "Win": | |
team_data['Kill_Proj'] = team_data['wKill%'] * kill_prediction | |
team_data['Death_Proj'] = team_data['wDeath%'] * death_prediction | |
team_data['Assist_Proj'] = team_data['wAssist%'] * kill_prediction | |
team_data = team_data[['playername', 'teamname', 'wKill%', 'wDeath%', 'wAssist%', 'wCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']] | |
else: | |
team_data['Kill_Proj'] = team_data['lKill%'] * kill_prediction | |
team_data['Death_Proj'] = team_data['lDeath%'] * death_prediction | |
team_data['Assist_Proj'] = team_data['lAssist%'] * kill_prediction | |
team_data = team_data[['playername', 'teamname', 'lKill%', 'lDeath%', 'lAssist%', 'lCS', 'Kill_Proj', 'Death_Proj', 'Assist_Proj']] | |
return team_data.dropna().reset_index(drop=True) | |
if st.button("Run"): | |
st.dataframe(init_team_data(selected_team, win_loss, kill_prediction, death_prediction, start_date, end_date).style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True) |