Spaces:
Running
Running
James McCool
Refactor init_team_data function in app.py to improve data handling and output format. Removed unnecessary display of opponent performance metrics and changed the return format to set the playername as the index. This update enhances the clarity of the returned data structure while maintaining the integrity of team performance evaluations.
cd69a95
import streamlit as st | |
st.set_page_config(layout="wide") | |
import numpy as np | |
import pandas as pd | |
import pymongo | |
import time | |
from datetime import datetime, timedelta | |
def init_conn(): | |
uri = st.secrets['mongo_uri'] | |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) | |
db = client["League_of_Legends_Database"] | |
current_date = datetime.now() | |
collection = db["gamelogs"] | |
max_date = current_date - timedelta(days=1) | |
min_date = current_date - timedelta(days=365) | |
team_names = collection.distinct("teamname") | |
player_names = collection.distinct("playername") | |
return db, team_names, player_names, min_date, max_date | |
db, team_names, player_names, min_date, max_date = init_conn() | |
display_formats = {'wKill%': '{:.2%}', 'wDeath%': '{:.2%}', 'wAssist%': '{:.2%}', 'lKill%': '{:.2%}', 'lDeath%': '{:.2%}', 'lAssist%': '{:.2%}'} | |
# Create sidebar container for options | |
with st.sidebar: | |
st.header("Team Analysis Options") | |
# Date filtering options | |
st.subheader("Date Range") | |
date_filter = st.radio( | |
"Select Date Range", | |
["Last Year", "Custom Range"] | |
) | |
if date_filter == "Last Year": | |
end_date = max_date | |
start_date = (end_date - timedelta(days=365)) | |
else: | |
col1, col2 = st.columns(2) | |
with col1: | |
start_date = st.date_input( | |
"Start Date", | |
value=max_date.date() - timedelta(days=30), | |
min_value=min_date.date(), | |
max_value=max_date.date() | |
) | |
with col2: | |
end_date = st.date_input( | |
"End Date", | |
value=max_date.date(), | |
min_value=min_date.date(), | |
max_value=max_date.date() | |
) | |
selected_team = st.selectbox( | |
"Select Team", | |
options=team_names, | |
index=team_names.index("T1") if "T1" in team_names else 0 | |
) | |
selected_opponent = st.selectbox( | |
"Select Opponent", | |
options=team_names, | |
index=team_names.index("T1") if "T1" in team_names else 0 | |
) | |
st.subheader("Prediction Settings") | |
win_loss = st.selectbox( | |
"Select Win/Loss", | |
options=["Win", "Loss"], | |
index=0 | |
) | |
game_settings = st.selectbox( | |
"Predict kills/deaths or use average?", | |
options=["Average", "Predict"], | |
index=0 | |
) | |
if game_settings == "Average": | |
kill_prediction = 0 | |
death_prediction = 0 | |
else: | |
kill_prediction = st.number_input( | |
"Predicted Team Kills", | |
min_value=1, | |
max_value=100, | |
value=20 | |
) | |
death_prediction = st.number_input( | |
"Predicted Team Deaths", | |
min_value=1, | |
max_value=100, | |
value=5 | |
) | |
def init_team_data(team, opponent, win_loss, kill_prediction, death_prediction, start_date, end_date): | |
# Convert date objects to datetime strings in the correct format | |
start_datetime = datetime.combine(start_date, datetime.min.time()).strftime("%Y-%m-%d %H:%M:%S") | |
end_datetime = datetime.combine(end_date, datetime.max.time()).strftime("%Y-%m-%d %H:%M:%S") | |
collection = db["gamelogs"] | |
cursor = collection.find({"teamname": team, "date": {"$gte": start_datetime, "$lte": end_datetime}}) | |
raw_display = pd.DataFrame(list(cursor)) | |
cursor = collection.find({"date": {"$gte": start_datetime, "$lte": end_datetime}}) | |
raw_opponent = pd.DataFrame(list(cursor)) | |
tables_to_loop = [raw_display, raw_opponent] | |
for loop in range(len(tables_to_loop)): | |
tables = tables_to_loop[loop] | |
calc_columns = ['kills', 'deaths', 'assists', 'total_cs'] | |
league_pos_win_stats = {} | |
league_pos_loss_stats = {} | |
Opponent_pos_win_allowed_stats = {} | |
Opponent_pos_loss_allowed_stats = {} | |
playername_win_stats = {} | |
playername_loss_stats = {} | |
teamname_win_stats = {} | |
teamname_loss_stats = {} | |
if loop == 0: | |
for stats in calc_columns: | |
playername_win_stats[stats] = tables[tables['result'] == 1].groupby(['playername'])[stats].mean().to_dict() | |
playername_loss_stats[stats] = tables[tables['result'] == 0].groupby(['playername'])[stats].mean().to_dict() | |
teamname_win_stats[stats] = tables[(tables['result'] == 1) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict() | |
teamname_loss_stats[stats] = tables[(tables['result'] == 0) & (tables['position'] == 'team')].groupby(['teamname'])[stats].mean().to_dict() | |
for stat in calc_columns: | |
column_name = f'playername_avg_{stat}_win' | |
tables[column_name] = tables.apply( | |
lambda row: playername_win_stats[stat].get(row['playername'], 0), | |
axis=1 | |
) | |
column_name = f'playername_avg_{stat}_loss' | |
tables[column_name] = tables.apply( | |
lambda row: playername_loss_stats[stat].get(row['playername'], 0), | |
axis=1 | |
) | |
column_name = f'teamname_avg_{stat}_win' | |
tables[column_name] = tables.apply( | |
lambda row: teamname_win_stats[stat].get(row['teamname'], 0), | |
axis=1 | |
) | |
column_name = f'teamname_avg_{stat}_loss' | |
tables[column_name] = tables.apply( | |
lambda row: teamname_loss_stats[stat].get(row['teamname'], 0), | |
axis=1 | |
) | |
tables['playername_avg_kill_share_win'] = tables['playername_avg_kills_win'] / tables['teamname_avg_kills_win'] | |
tables['playername_avg_death_share_win'] = tables['playername_avg_deaths_win'] / tables['teamname_avg_deaths_win'] | |
tables['playername_avg_assist_share_win'] = tables['playername_avg_assists_win'] / tables['teamname_avg_kills_win'] | |
tables['playername_avg_cs_share_win'] = tables['playername_avg_total_cs_win'] / tables['teamname_avg_total_cs_win'] | |
tables['playername_avg_kill_share_loss'] = tables['playername_avg_kills_loss'] / tables['teamname_avg_kills_loss'] | |
tables['playername_avg_death_share_loss'] = tables['playername_avg_deaths_loss'] / tables['teamname_avg_deaths_loss'] | |
tables['playername_avg_assist_share_loss'] = tables['playername_avg_assists_loss'] / tables['teamname_avg_kills_loss'] | |
tables['playername_avg_cs_share_loss'] = tables['playername_avg_total_cs_loss'] / tables['teamname_avg_total_cs_loss'] | |
player_tables = tables | |
else: | |
for stats in calc_columns: | |
league_pos_win_stats[stats] = { | |
league: group.groupby('position')[stats].mean().to_dict() | |
for league, group in tables[tables['result'] == 1].groupby('league') | |
} | |
league_pos_loss_stats[stats] = { | |
league: group.groupby('position')[stats].mean().to_dict() | |
for league, group in tables[tables['result'] == 0].groupby('league') | |
} | |
Opponent_pos_win_allowed_stats[stats] = { | |
opponent: group.groupby('position')[stats].mean().to_dict() | |
for opponent, group in tables[tables['result'] == 1].groupby('Opponent') | |
} | |
Opponent_pos_loss_allowed_stats[stats] = { | |
opponent: group.groupby('position')[stats].mean().to_dict() | |
for opponent, group in tables[tables['result'] == 0].groupby('Opponent') | |
} | |
for stat in calc_columns: | |
column_name = f'league_pos_avg_{stat}_win' | |
tables[column_name] = tables.apply( | |
lambda row: league_pos_win_stats[stat].get(row['league'], {}).get(row['position'], 0), | |
axis=1 | |
) | |
column_name = f'league_pos_avg_{stat}_loss' | |
tables[column_name] = tables.apply( | |
lambda row: league_pos_loss_stats[stat].get(row['league'], {}).get(row['position'], 0), | |
axis=1 | |
) | |
column_name = f'Opponent_pos_avg_{stat}_allowed_win' | |
tables[column_name] = tables.apply( | |
lambda row: Opponent_pos_win_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0), | |
axis=1 | |
) | |
column_name = f'Opponent_pos_avg_{stat}_allowed_loss' | |
tables[column_name] = tables.apply( | |
lambda row: Opponent_pos_loss_allowed_stats[stat].get(row['Opponent'], {}).get(row['position'], 0), | |
axis=1 | |
) | |
tables = tables[tables['Opponent'] == opponent] | |
tables['overall_win_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_win'] / tables['league_pos_avg_kills_win'] | |
tables['overall_win_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_win'] / tables['league_pos_avg_deaths_win'] | |
tables['overall_win_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_win'] / tables['league_pos_avg_assists_win'] | |
tables['overall_win_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_win'] / tables['league_pos_avg_total_cs_win'] | |
tables['overall_loss_kills_boost_pos'] = tables['Opponent_pos_avg_kills_allowed_loss'] / tables['league_pos_avg_kills_loss'] | |
tables['overall_loss_deaths_boost_pos'] = tables['Opponent_pos_avg_deaths_allowed_loss'] / tables['league_pos_avg_deaths_loss'] | |
tables['overall_loss_assists_boost_pos'] = tables['Opponent_pos_avg_assists_allowed_loss'] / tables['league_pos_avg_assists_loss'] | |
tables['overall_loss_total_cs_boost_pos'] = tables['Opponent_pos_avg_total_cs_allowed_loss'] / tables['league_pos_avg_total_cs_loss'] | |
opp_tables = tables | |
opp_pos_kills_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_kills_boost_pos'])) | |
opp_pos_deaths_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_deaths_boost_pos'])) | |
opp_pos_assists_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_assists_boost_pos'])) | |
opp_pos_cs_boost_win = dict(zip(opp_tables['position'], opp_tables['overall_win_total_cs_boost_pos'])) | |
opp_pos_kills_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_kills_boost_pos'])) | |
opp_pos_deaths_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_deaths_boost_pos'])) | |
opp_pos_assists_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_assists_boost_pos'])) | |
opp_pos_cs_boost_loss = dict(zip(opp_tables['position'], opp_tables['overall_loss_total_cs_boost_pos'])) | |
if kill_prediction > 0: | |
player_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kill_share_win', 'playername_avg_death_share_win','playername_avg_assist_share_win', | |
'playername_avg_total_cs_win', 'playername_avg_kill_share_loss', 'playername_avg_death_share_loss', 'playername_avg_assist_share_loss', 'playername_avg_total_cs_loss']] | |
player_tables = player_tables.rename(columns = {'playername_avg_kill_share_win': 'wKill%', 'playername_avg_death_share_win': 'wDeath%', 'playername_avg_assist_share_win': 'wAssist%', | |
'playername_avg_total_cs_win': 'wCS', 'playername_avg_kill_share_loss': 'lKill%', 'playername_avg_death_share_loss': 'lDeath%', | |
'playername_avg_assist_share_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'}) | |
team_data = player_tables.drop_duplicates(subset = ['playername']) | |
if win_loss == "Win": | |
team_data['Kill_Proj'] = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1) | |
team_data['Death_Proj'] = team_data.apply(lambda row: row['wDeath%'] * opp_pos_deaths_boost_win.get(row['position'], 1), axis=1) | |
team_data['Assist_Proj'] = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1) | |
team_data['CS_Proj'] = team_data.apply(lambda row: row['wCS'] * opp_pos_cs_boost_win.get(row['position'], 1), axis=1) | |
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']] | |
else: | |
team_data['Kill_Proj'] = team_data.apply(lambda row: row['lKill%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1) | |
team_data['Death_Proj'] = team_data.apply(lambda row: row['lDeath%'] * opp_pos_deaths_boost_loss.get(row['position'], 1), axis=1) | |
team_data['Assist_Proj'] = team_data.apply(lambda row: row['lAssist%'] * opp_pos_assists_boost_loss.get(row['position'], 1), axis=1) | |
team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1) | |
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']] | |
else: | |
player_tables = player_tables[['playername', 'teamname', 'position', 'playername_avg_kills_win', 'playername_avg_deaths_win', 'playername_avg_assists_win', 'playername_avg_total_cs_win', | |
'playername_avg_kills_loss', 'playername_avg_deaths_loss', 'playername_avg_assists_loss', 'playername_avg_total_cs_loss']] | |
player_tables = player_tables.rename(columns = {'playername_avg_kills_win': 'wKill%', 'playername_avg_deaths_win': 'wDeath%', 'playername_avg_assists_win': 'wAssist%', | |
'playername_avg_total_cs_win': 'wCS', 'playername_avg_kills_loss': 'lKill%', 'playername_avg_deaths_loss': 'lDeath%', | |
'playername_avg_assists_loss': 'lAssist%', 'playername_avg_total_cs_loss': 'lCS'}) | |
team_data = player_tables.drop_duplicates(subset = ['playername']) | |
if win_loss == "Win": | |
team_data['Kill_Proj'] = team_data.apply(lambda row: row['wKill%'] * opp_pos_kills_boost_win.get(row['position'], 1), axis=1) | |
team_data['Death_Proj'] = team_data.apply(lambda row: row['wDeath%'] * opp_pos_deaths_boost_win.get(row['position'], 1), axis=1) | |
team_data['Assist_Proj'] = team_data.apply(lambda row: row['wAssist%'] * opp_pos_assists_boost_win.get(row['position'], 1), axis=1) | |
team_data['CS_Proj'] = team_data.apply(lambda row: row['wCS'] * opp_pos_cs_boost_win.get(row['position'], 1), axis=1) | |
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']] | |
else: | |
team_data['Kill_Proj'] = team_data.apply(lambda row: row['lKill%'] * opp_pos_kills_boost_loss.get(row['position'], 1), axis=1) | |
team_data['Death_Proj'] = team_data.apply(lambda row: row['lDeath%'] * opp_pos_deaths_boost_loss.get(row['position'], 1), axis=1) | |
team_data['Assist_Proj'] = team_data.apply(lambda row: row['lAssist%'] * opp_pos_assists_boost_loss.get(row['position'], 1), axis=1) | |
team_data['CS_Proj'] = team_data.apply(lambda row: row['lCS'] * opp_pos_cs_boost_loss.get(row['position'], 1), axis=1) | |
team_data = team_data[['playername', 'teamname', 'position', 'Kill_Proj', 'Death_Proj', 'Assist_Proj', 'CS_Proj']] | |
return team_data.dropna().set_index('playername') | |
if st.button("Run"): | |
st.dataframe(init_team_data(selected_team, selected_opponent, win_loss, kill_prediction, death_prediction, start_date, end_date).style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(display_formats, precision=2), use_container_width = True) |